TO:

Daniel J. Lafferty

Watershed Management Division

Attention Giles Coon

FROM:

Greg Kelley

Geotechnical and Materials Engineering Division

GEOTECHNICAL INVESTIGATION
GATES CANYON PARK
REGIONAL LOW IMPACT DEVELOPMENT
PROJECT NO. F21816I02

In accordance with your request, we performed a geotechnical investigation for the subject project. Our findings and recommendations are included in the attached report.

If you have any questions regarding this matter, please contact Yonah Halpern or Karin Burger at Extension 4925. To provide feedback on our services, please access http://dpw.lacounty.gov/go/gmedsurvey to complete a Customer Service Survey.

YH:KB:kw

p:\gmepub\secretarial\geotech eng\2017\gates canyon park lid report.docx

Attach.

GEOTECHNICAL INVESTIGATION

GATES CANYON PARK REGIONAL LOW IMPACT DEVELOPMENT UNINCORPORATED CALABASAS

Prepared for

County of Los Angeles Department of Public Works Watershed Management Division

Prepared by

County of Los Angeles
Department of Public Works
Geotechnical and Materials Engineering Division
Soils and Geology Investigation Units

August 14, 2017

TABLE OF CONTENTS

P.	AGE
NTRODUCTION	1
PROJECT BACKGROUND	1
SITE LOCATION	1
SITE HISTORY	2
SUBSURFACE INVESTIGATION	
Regional Geology Local Geology Artificial Fill (af) Colluvium (Qc) Shale (Tush)	3 3 3
HYDROGEOLOGYRegional HydrogeologyLocal Hydrogeology	4 4
ABORATORY TESTING	5
SLOPE STABILITY	5
INDINGS Subsurface Conditions Groundwater	6
CONCLUSIONS	7
Design Infiltration Rate	7 8
Dry Well Design Storage Cistern Design Diversion Pipe Bedding and Backfill Temporary Excavations General	9 9 9
CONSTRUCTION CONSIDERATIONS	
IMITATIONS	
REFERENCES	

TABLE OF CONTENTS (CONT.)	
	PAGE
TABLES	
Table 1 – Subsurface Water Observations	4
Table 2 – Shear Strength Parameters	5
Table 3 – Slope Stability Results	6
Table 4 – Reduction Factors	8
<u>FIGURES</u>	
Figure 1 – Site Location Map Figure 2 – Boring Location Map with Infiltration Rates Figure 3 – Geologic Map and Cross Section	
<u>APPENDICES</u>	
Appendix A – As-Built Geotechnical Map and Cross-Sections (Tract 39509) Appendix B – Log of Borings Appendix C – Summary of Laboratory Results Appendix D – Slope Stability Analyses	
Appendix E – Percolation Test Calculation Sheets	

INTRODUCTION

In response to a verbal request from Watershed Management Division (WMD) on March 10, 2016, Geotechnical and Materials Engineering Division (GMED) performed a geotechnical investigation for the proposed Gates Canyon Park Regional Low Impact Development (LID) project. The project proposes to divert stormwater from existing storm drains into infiltration basins, drywells, and other devices for regional stormwater infiltration. The project is located in the unincorporated area of Calabasas at Gates Canyon Park, shown on the Site Location Map (Figure 1). Our scope of work included desktop research, subsurface exploration including percolation testing, engineering analyses, and preparation of this report. Geotechnical findings and recommendations are presented herein.

PROJECT BACKGROUND

The project proposes to capture a design volume of approximately 3.1 acre-feet (1,010,139 gallons) of stormwater for the design event. It is our understanding that stormwater would be diverted from existing storm drains along Thousand Oaks Boulevard, pre-treated and temporarily stored in cisterns below the park, and then pumped up to a series of dry wells and infiltrated into bedrock. Potential dry well locations were selected for subsurface exploration and evaluation of infiltration potential based on feasibility of construction along with consideration for not disturbing existing park facilities or oak trees. These locations included the ascending slope to the west of the parking lot (Area A), and the ascending slope northwest of the tennis courts and north of the basketball court (Area B), refer to Figure 2. Percolation testing within the developed park was not performed because it is generally underlain by deep engineered fill up to 80 feet thick. The open grassy field location was evaluated to determine if construction of a cistern was feasible in that location and if incidental infiltration was acceptable.

SITE LOCATION

Topographic relief across the park ranges from elevation 1,010 feet above mean sea level (msl) at the top of the west ascending slope to elevation 915 feet above msl in the parking lot adjacent to the toe of slope, with a maximum slope gradient of approximately 5:1 (horizontal:vertical). Prior to development, natural drainage throughout the subdivision consisted of a dendritic pattern across the structural trends of the underlying bedrock. Rainfall would sheet flow from the steeper hill slopes and channel flow to collect in the valley areas where it would flow to Las Virgenes Creek.

SITE HISTORY

Grading for Gates Canyon Park was performed in the late 1980's during the development of residential Tract 39509 under the geotechnical direction of Staal, Gardner, & Dunne, Inc., Consulting Engineers and Geologists. The park site is located on Lot 386 of the tract. Based on our review of the final as-graded geotechnical map for the tract, grading at the park location included canyon cleanouts, landslide removals, canyon subdrain installations, and fill placement. It appears that up to 80 feet of engineered fill was placed at the park site and adjacent to Thousand Oaks Boulevard to achieve finished grade. Fill materials generally consisted of sandy clays and were compacted to at least 90 percent relative compaction and documented in interim construction reports. The aforementioned as-built geotechnical and corresponding geologic map cross-sections from Tract 39509 are included in Appendix A.

Note that sandy clay engineered fill materials compacted to 90 percent relative compaction are typically not suitable for stormwater infiltration. Based on conversations with WMD, City of Calabasas maintenance personnel have complained that water ponds in the park during and after rain events. This ponding suggests that the fill at the park is consistent with low-infiltration materials such as sandy clay.

SUBSURFACE INVESTIGATION

To evaluate the site and determine subsurface conditions, nine exploratory borings were drilled and eight percolation tests were conducted on June 8 through 15, 2016, under the supervision of GMED personnel. Borings were drilled by Roy Brothers Drilling, Inc. using a LoDrill attachment to a track mounted Caterpillar Excavator. Borings were mostly drilled using a 24-inch diameter flight auger, although the bucket auger was required to penetrate intermittent hard layers. Borings were drilled to a maximum depth of 80 feet below grade.

Direct observation of the bedrock was performed through downhole logging by the project geologist in Borings B-1 through B-4, B-6, and B-8. The approximate boring locations are shown on Figure 2 and the Log of Borings are provided in Appendix B.

Eight of the borings were used to conduct percolation testing per the Department of Public Health guide to Onsite Wastewater Treatment Systems (OWTS) for Seepage Pit Dispersal Systems. The test procedure was adapted slightly for the purposes of evaluating stormwater infiltration.

GEOLOGIC SETTING

Regional Geology

The region is underlain by unnamed Miocene shale and sandstone overlying Modelo Formation (Dibblee, 1992). The unnamed units are characterized by fine grained sandstone, claystone, siltstone, and diatomaceous shale, which is divided into four dominant units. The Modelo Formation is characterized by relatively thick sequences of shale, siltstone, and sandstone and is divided into three dominant units. The bedrock is folded into a series of northwest-southeast trending anticlines and synclines.

Local Geology

The study location is underlain by bedrock that is characterized by interbedded claystone and siltstone that is moderately bedded and crumbly where weathered. The shale is overlain by colluvium. The distribution of geologic materials is shown on the geologic map and cross-section (Figure 3) and described in detail below. The Log of Borings contain detailed descriptions of subsurface findings and are included in Appendix B.

Artifical Fill (af)

Artificial fill was placed during construction of Thousand Oaks Boulevard and Gates Canyon Park. The materials are a mixture of clayey silt to silty clay with sporadic gravels and small boulders. The materials are dark brown to dark gray and were found to be in a dense to very dense condition and ranged from moist to wet.

Colluvium (Qc)

Colluvium consists of angular rock fragments within a dark brown silty clay to sandy clay matrix. The rock fragments consist of light brown to tan, blocky and highly weathered shale fragments ranging from 2- to 4-inches in diameter. Colluvial thickness ranged from just a few feet thick up to 23 feet where encountered. The colluvial matrix is dark brown to brown-black and ranged from dry to moist.

Shale (Tush)

Shale ranges from thinly to poorly bedded and consisted of interbedded claystone and siltstone of varying hardness. Siliceous layers, gypsum veins, and altered ash layers were encountered and ranged in thickness from ¼ inch up to 1½ inches thick and often defined bedding. Manganese mottling and rusty oxidation staining and mottling was

observed on bedding planes and fracture surfaces. The shale was found to be in a moist condition and wet or saturated where seepage was encountered.

HYDROGEOLOGY

Regional Hydrogeology

The site is located within an area characterized by bedrock ridges and intervening valleys. Based on the California Geologic Survey, Seismic Hazard Zone Report (06) for the Calabasas 7.5-Minute Quadrangle, the historical high groundwater levels are at 20 feet below ground surface and confined to the Las Virgenes Canyon. Groundwater is localized to alluvial deposits found in the valleys, which is directly controlled by regional rainfall. Perched water may be encountered at varying depths depending on local bedrock conditions.

Local Hydrogeology

Subsurface water was encountered as weeping or seepage in Borings B-1 through B-3, B-5, and B-7 at the time of exploration. Table 1 is a summary of the subsurface water that was observed in the borings, including depth to water below existing ground surface and the corresponding date of observation. Where encountered, weeping or seepage was confined to perched zones or fracture zones. Standing water was observed in Boring B-1; however, the bore was allowed to accumulate water overnight. Encountered conditions are described in detail in the Log of Borings included in Appendix B.

Table 1: Subsurface Water Observations

Boring Number	Depth to Weeping and Seepage (feet)	Date of Observation	Depth to Standing Water (feet)	Date of Observation
B-1	61	5/23/16	77	5/24/16
B-2	40.5	5/24/16	Not Encountered	Not Observed
B-3	35	5/24/16	Not Encountered	Not Observed
B-4	Not Encountered	5/26/16	Not Encountered	Not Observed
B-5	57	5/25/16	Not Encountered	Not Observed
B-6	Not Encountered	5/26/16	Not Encountered	Not Observed
B-7	25; 57	5/25/16	Not Encountered	Not Observed
B-8	Not Encountered	5/26/16	Not Encountered	Not Observed
B-9	Not Encountered	5/26/16	Not Encountered	Not Observed

ENVIRONMENTAL CONSIDERATIONS

Prior to the development of Tract 39509, the project site and vicinity consisted of a remote and undeveloped natural area. Per the guidelines contained the Corrective Action Plan (2013) pertaining to the need for a Preliminary Environmental Site Screening (PESS), GMED waived the need to prepare a PESS because based on a natural and undeveloped site history, contamination is not anticipated.

LABORATORY TESTING

Bulk and relatively undisturbed samples were collected from the borings to determine soil properties and confirm classifications made in the field. GMED's Materials Laboratory at the Alcazar Yard performed the testing. A summary of the test results is provided in Appendix C.

SLOPE STABILITY

Slope stability analyses were performed based on Geologic Cross-Section A-A' (Figure 3) provided in Appendix D. Shear strength parameters used in the analyses were selected based on an evaluation of the previous geotechnical test results and data from consultant reports for Tract 39509 (Staal, Gardner, and Dunne, Inc., 1987) compared to the results of site specific shear testing on samples collected from the borings during this exploration. A summary of shear strength parameters used in the analyses is presented in Table 2 below.

Table 2: Shear Strength Parameters

Material	Unit Weight (pcf)	Friction Angle (phi)	Cohesion (psf)
Engineered Fill (af)	120	26	500
Colluvium (Qc)	120	12	310
Shale Bedrock (Tush) along bedding 12°-22°	120	22	150
Shale Bedrock (Tush) across bedding	120	30	300

Analyses were performed with the program Slope/W 2012 Version, using Spencer's method of analysis. The analyses were performed to evaluate the current condition of the slope, under static and seismic conditions, for both translational and circular failures. The seismic analyses used a coefficient of 0.15 for the horizontal inertial force (K_h) and ultimate shear values instead of peak for additional conservatism.

In order to evaluate the impact of stormwater infiltration, the slope was also evaluated for the proposed condition after dry wells have been constructed. The proposed condition was modeled using a piezometric surface to mimic the anticipated movement of water. It was assumed that stormwater will not infiltrate through the layer of colluvium above bedrock where the recommended capping depth is or penetrate very significantly into clayey engineered fill at the toe of the slope.

All the conditions analyzed have factors of safety greater than the County's requirements of 1.5 for static conditions and 1.1 for seismic conditions. A summary of the results is presented in Table 3 below. A complete copy of the results in included in Appendix D.

Table 3: Slope Stability Results

Section A-A' Analyzed	Factor of Safety (current)	Factor of Safety (proposed)
Translational Static	2.22	1.87
Translational Seismic	1.37	1.16
Circular Static	1.76	1.75
Circular Seismic	1.30	1.28

FINDINGS

Subsurface Conditions

- Shale bedrock encountered in Borings B-1 through B-8 was generally found to be moderately bedded with randomly oriented fractures that were commonly infilled.
- Shale bedrock suitable for infiltration was encountered in Borings B-1 through B-3, shown as Area A on Figure 2. The distribution of geologic materials is shown on the geologic map and illustrated on Geologic Cross Section A-A' (Figure 3).
- Bedrock encountered in Borings B-4 through B-8, shown as Area B on Figure 2, was found to be disturbed and weak with heavy seepage encountered in Borings B-5 and B-7. Based on the bedrock conditions, the potential for water mounding, daylighting, and/or instability of the ascending slopes would preclude Area B from consideration to infiltrate stormwater.
- Results of percolation testing indicate the bedrock in Area A has a range of infiltration rates greater than 0.3 inches per hour, as required by the NPDES permit. The data has been reduced and correction factors applied to generate the

design infiltration rate presented in the recommendations below. The Percolation Test Calculation Sheets are included in Appendix E.

 An additional boring, Boring B-9, was drilled in the open grassy field to confirm subsurface information from the existing tract file regarding infeasibility of fill to infiltrate stormwater and evaluate the potential for incidental infiltration. Subsurface materials encountered in Boring B-9 consisted predominantly of stiff to very stiff sandy clay and may be classified as Hydrologic Soil Group (HSG) C. Water movement through HSG C is considered to be impeded.

Groundwater

- Perched groundwater was encountered during exploration as weeping or seepage in Borings B-1, B-2, B-3, B-5, and B-7 at approximate depths of 77, 40.5, 35, 57, and 25 and 57 feet, respectively (refer to Table 1). Although groundwater was encountered, it is not part of a regional groundwater table or aquifer and its occurrence may vary locally in response to rainfall and irrigation of the adjoining neighborhood to the west.
- Based on review of the California Geological Survey Seismic Hazard Zone Report (06) for the Calabasas 7.5-Minute Quadrangle, the historical high groundwater level for the subject site is undetermined.

CONCLUSIONS

Based on the above findings, the proposed project is feasible for Area A from a geotechnical perspective if the recommendations provided below are followed. The infiltration rate for Area A is greater than the required 0.3 inches per hour, and although weeping and seepage occurred in some of the boreholes, a regional groundwater table or aquifer was not encountered to the maximum exploration depth of 80 feet. Area B is not considered suitable for infiltration.

RECOMMENDATIONS

Design Infiltration Rate

- Proposed dry wells may be designed using an infiltration rate of 1.4 inches per hour (20.9 gallons per square foot per day). This rate includes a total correction factor of 8 determined from the GS 200.1 Guidelines for Geotechnical Reporting for Low Impact Development.
- The recommended correction factors are presented in Table 4 below with additional notes regarding the reduction of correction factors for use in the design and construction phases of the project.

Table 4: Reduction Factors

Reduction Factors Applied to Measured Infiltration Rates					
Test method (CF _t)	2				
Site variability (CF _v)	2				
Siltation and maintenance (CF _s)	2				
Total Reduction Factor (CF _t x CF _v x CF _s)	8				

Reduction Factor Notes:

- The reduction factor for siltation and maintenance may be reduced to 1 if the civil designer provides adequate pretreatment such that only clean water with no turbidity is infiltrated into the dry wells.
- The reduction factor for site variability may be reduced to 1 if the verification testing recommended in the Construction Considerations section below is followed.

Allowable Zone of Infiltration

- The capping depth (top of well) for the proposed dry wells should be whichever of the following produces the greatest depth: at least 15 feet below grade, or at least 3 feet below the contact between colluvium and bedrock as shown on Geologic Cross Section A-A'.
- The recommended height of dry wells is 25 feet, starting below the capping depth extending to approximately 40 feet below grade. Results of the percolation testing indicate the zone of infiltration is limited to the upper bedrock materials. Deeper zones increase in density and decrease in fractures that facilitate infiltration.

A minimum separation of 10 feet is required between the bottom of proposed dry
wells and the seasonal high groundwater elevation. Since a true groundwater
table was not encountered to the maximum exploration depth of 80 feet, dry wells
will comply with this requirement if the recommended zone of infiltration above is
followed.

Dry Well Design

- A minimum dry well spacing of five diameters (center to center) is recommended. The anticipated zone of influence of dry wells for this project is particularly difficult to estimate due to the randomly distributed orientation of fractures in the bedrock. This spacing should be increased to the maximum possible extent within the project limits and constraints to optimize performance of the dry wells.
- A setback of two dry well diameters is recommended from the toe of slope, where the daylight contact is made between artificial fill and bedrock, to the outer diameter of adjacent dry wells.
- In order to improve performance of the proposed dry wells, it would be beneficial
 to consider the hydraulics of the proposed network such that adjacent dry wells
 are not filled at the same time in smaller storm events. It is preferred that the dry
 wells be filled in an alternating "every-other" pattern, if possible.

Storage Cistern Design

- Incidental stormwater infiltration for the proposed storage cistern in the park area
 is acceptable from a geotechnical perspective and not likely to trigger any
 geotechnical hazards. The infiltration rate in clayey engineered fill, up to 80 feet
 thick in some areas below the park, will be extremely low and capture volume
 should be considered marginal.
- Additional geotechnical parameters for design of the proposed storage cistern can be provided as the project plans, including dimensions and footprint of the proposed cistern, are developed.

Diversion Pipe Bedding and Backfill

 Excavated on-site material is not suitable for use as bedding subject to the requirements of Standards Specifications for Public Works Construction (SSPWC) Section 217-1.

- Excavated on-site material is suitable for use as trench backfill in areas where no load will be placed above the trenches, subject to the requirements of SSPWC Section 217-2.
- In areas where trench backfill will be subjected to loading, imported backfill should be used in accordance with the requirements of SSPWC Section 217-3.
- All backfill must be compacted to a minimum relative compaction of 90 percent of the maximum dry density and tested using ASTM D1557.

Temporary Excavations

- Dry well excavations will likely require surface casing to 15 feet, or to bedrock, to protect workers from caving of loose colluvium soils during construction.
- The soils encountered in borings B-2, B-3, and B-4 can be classified as Type C, and the soils encountered in Boring B-9 may be classified as Type B as defined in the California Code of Regulation Title 8, Division 1, Chapter 4, Subchapter 4, Article 6, Appendix A.
- Excavations greater than 5 feet in depth should either be shored or sloped back at a gradient per Cal/OSHA requirements, excluding the dry well excavations.
- The Amendments to Specifications to be included in the Special Provisions will be provided under separate cover as the project specifications are prepared.

General

- Per the Environmental Protection Agency Underground Injection Control (UIC), proposed dry wells may be classified as Class V wells subject to UIC requirements that include submitting inventory information.
- It is our understanding that additional ancillary structures including a storage cistern, pump station and diversion pipes may be required for this project. A supplementary geotechnical investigation can be performed to provide design parameters for these facilities as the project plans are developed.
- The Log of Borings provided in Appendix B and the boring locations shown on the boring location map should be included in the project plans.

 Preliminary plans and final design plans and specifications should be submitted to GMED for review, comment, and approval to ensure the recommendations have been properly incorporated into the plans.

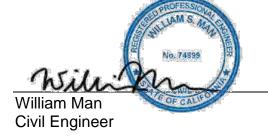
CONSTRUCTION CONSIDERATIONS

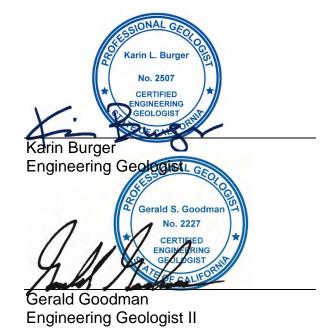
- The recommended reduction factor for site variability and corresponding design infiltration rate may be reduced to 1 during construction based on in situ as-built verification testing. Percolation tests can be performed in dry wells once they have been installed and the number of wells may be adjusted based on measured infiltration rates. A quality control program should be outlined in the project bid documents and developed with GMED input during the plan and specification review process.
- The capping depths of dry wells (top of well) should be verified by a registered professional geologist during construction. Inspection should be performed to verify the capping depth is at least 3 feet below colluvium to ensure recommendations and slope stability analyses presented herein remain valid. Please contact us at least 2 weeks prior to construction.
- GMED should be notified immediately to verify any change of conditions observed during construction operations.

LIMITATIONS

This report has been prepared for the exclusive use of Public Works for the specific site discussed herein and should not be considered transferable to other sites or projects. In the event that any modification of the design, configuration, or use of the site is planned, the conclusions and recommendations contained in this report are no longer valid. This study was conducted according to generally accepted geotechnical practice for projects of this magnitude.

Our findings, conclusions, and recommendations are based on our field and laboratory results and our interpretation of the data. The attached boring logs contain observations and interpretations that are valid only for the specific date and location of the borings. Subsurface conditions may vary between boring locations and time. Hence, our conclusions and recommendations are professional opinions and are not meant to be a control of nature. No warranty is herein expressed or implied.

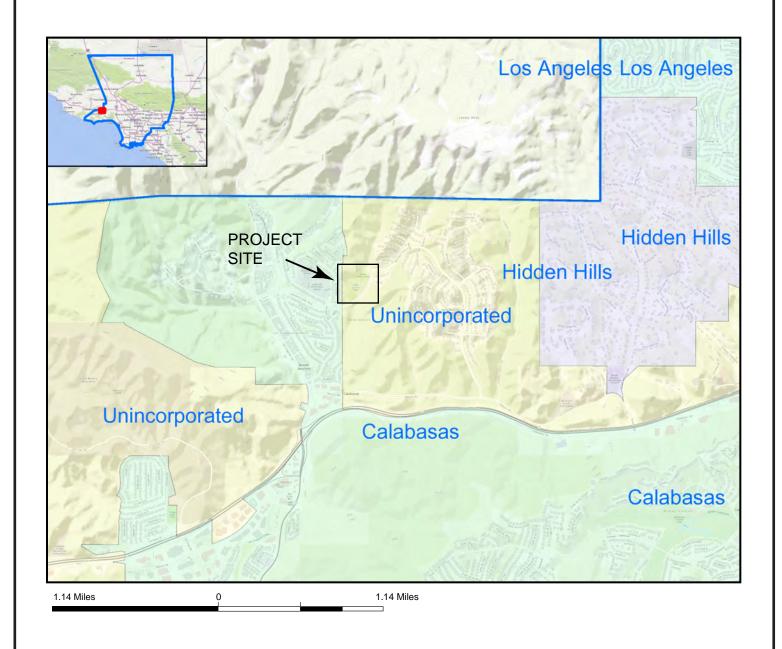

This report may not be duplicated without the written consent County of Los Angeles Department of Public Works.

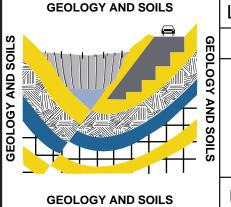


If you have any questions regarding this report, please contact Yonah Halpern or Karin Burger of the Geotechnical and Materials Engineering Division at Extension 4925.

Prepared by:

REFERENCES


- Barclays California Code of Regulations, Title 8, Division 1, Chapter 4, Subchapter 4, Article 6, Appendix A, November 2006.
- California Department of Conservation, *Seismic Hazard Zone Report 06* for *Calabasas 7.5-Minute Quadrangle*, California Geological Survey (formerly Division of Mines and Geology), Los Angeles County, 1998.
- California Department of Transportation, *Corrosion Guidelines*, Version 1.0; September 2003.
- County of Los Angeles Building Code, 2014 Edition.
- County of Los Angeles Department of Public Health, *A Professional Guide to Requirements and Procedures for Onsite Wastewater Treatment Systems*, Bureau of Environmental Protection Land Use Program, November 1, 2013.
- County of Los Angeles Department of Public Works; Gates Canyon Park Conceptual Plan Fact Sheet, Watershed Management Division, undated.
- County of Los Angeles Department of Public Works, Low Impact Development Best Management Practice: Guideline for Design, Investigation, and Reporting (GS200.1), Geotechnical and Materials Engineering Division, December 31, 2014.
- County of Los Angeles Department of Public Works, Preliminary Environmental Site Screening (Corrective Action Plan), Geotechnical and Materials Engineering Division, December 12, 2013.
- Dibblee Jr., Thomas W., Geologic Map of the Calabasas Quadrangle, Edited by H.E. Ehrenspeck,1992, and J.A. Minch, 2008.
- Naval Facilities Engineering Command (NAVFAC) Design Manual 7.02, September 1986.
- Staal, Gardner and Dunne, Inc., Addendum to Final Soils and Geology Report, Nonresidential Lots 386 and 388 through 389, Tract 39509, Calabasas, July 25, 1990.



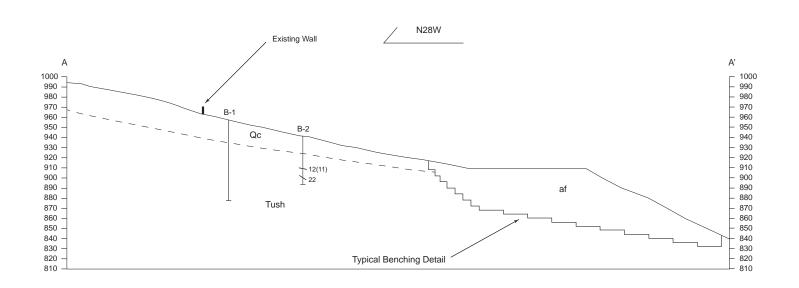
- Staal, Gardner and Dunne, Inc., *Final Soils and Geology Report*, Nonresidential Lots 386 and 388 through 389, Tract 39509, Calabasas, July 16, 1990.
- Staal, Gardner and Dunne, Inc., *Geotechnical Study*, Tentative Tract 39509, Los Angeles County, January, 1987.
- Staal, Gardner and Dunne, Inc., *Interim Report No. 5*, Rough Grading, Tract 39509, Los Angeles County, July 6, 1988.
- Standard Specifications for Public Works Construction, 2015 Edition.
- United States Department of Agriculture, Natural Resources Conservation Service, Part 630 Hydrology National Engineering Handbook – Chapter 7 Hydrologic Soil Groups, May 2007.

LOS ANGELES COUNTY DEPARTMENT OF PUBLIC WORKS

GEOTECHNICAL AND MATERIALS ENGINEERING DIVISION

SITE LOCATION MAP
GATES CANYON PARK INFILTRATION STUDY
UNINCORPORATED CALABASAS AREA

Date: April 2017 | [


Drafted by: KLB

Scale: As Shown

FIGURE 1

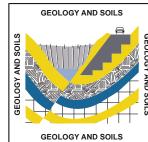
EXPLANATION

artificial fill (Tract 39509)

Qc Quaternary Colluvium

Tertiary Undifferentiated Shale Tush

Boring Location (2016) B-3


Bedding Attitude

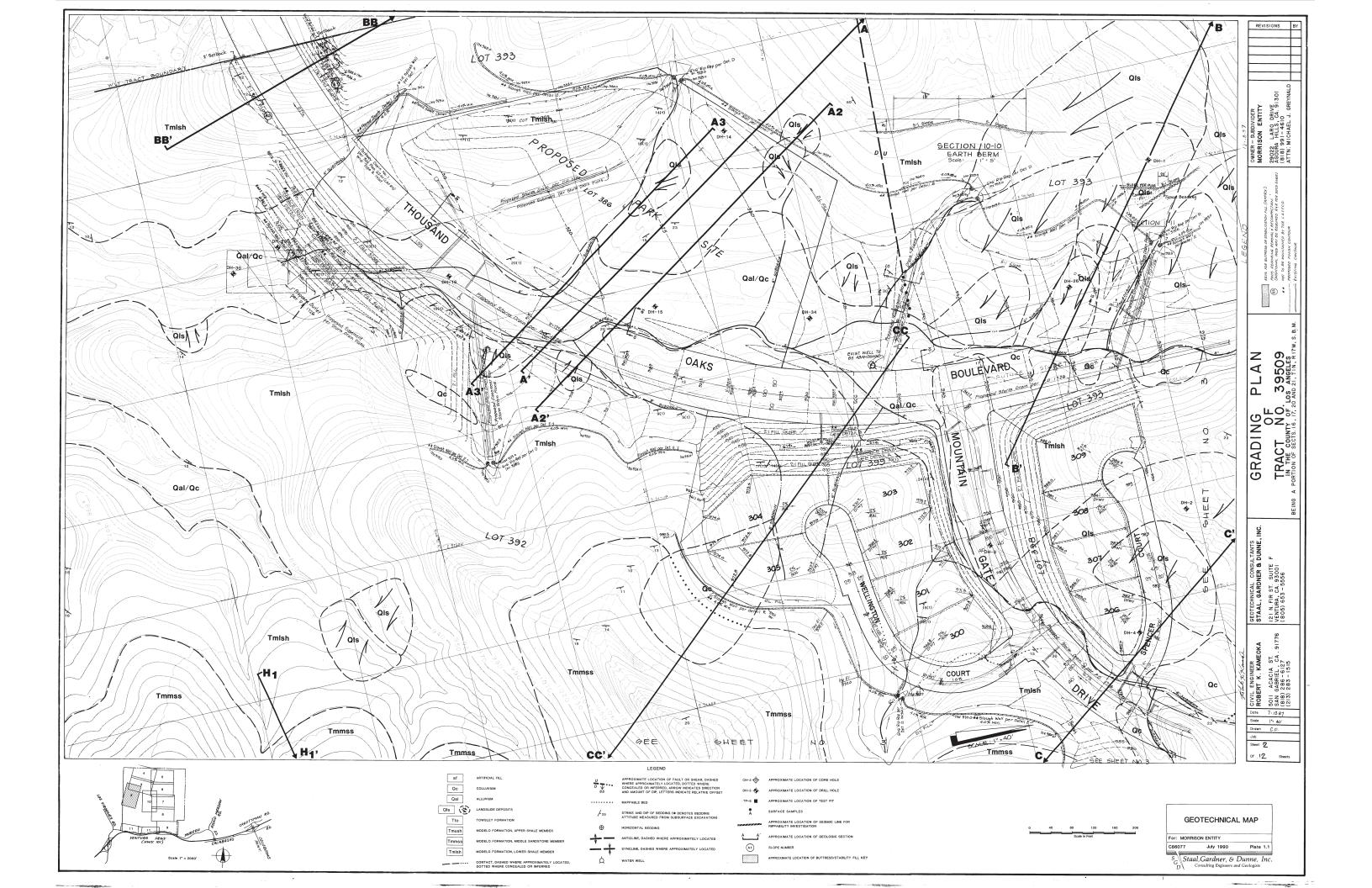
Joint/Fracture Attitude

Contact (aproximated)

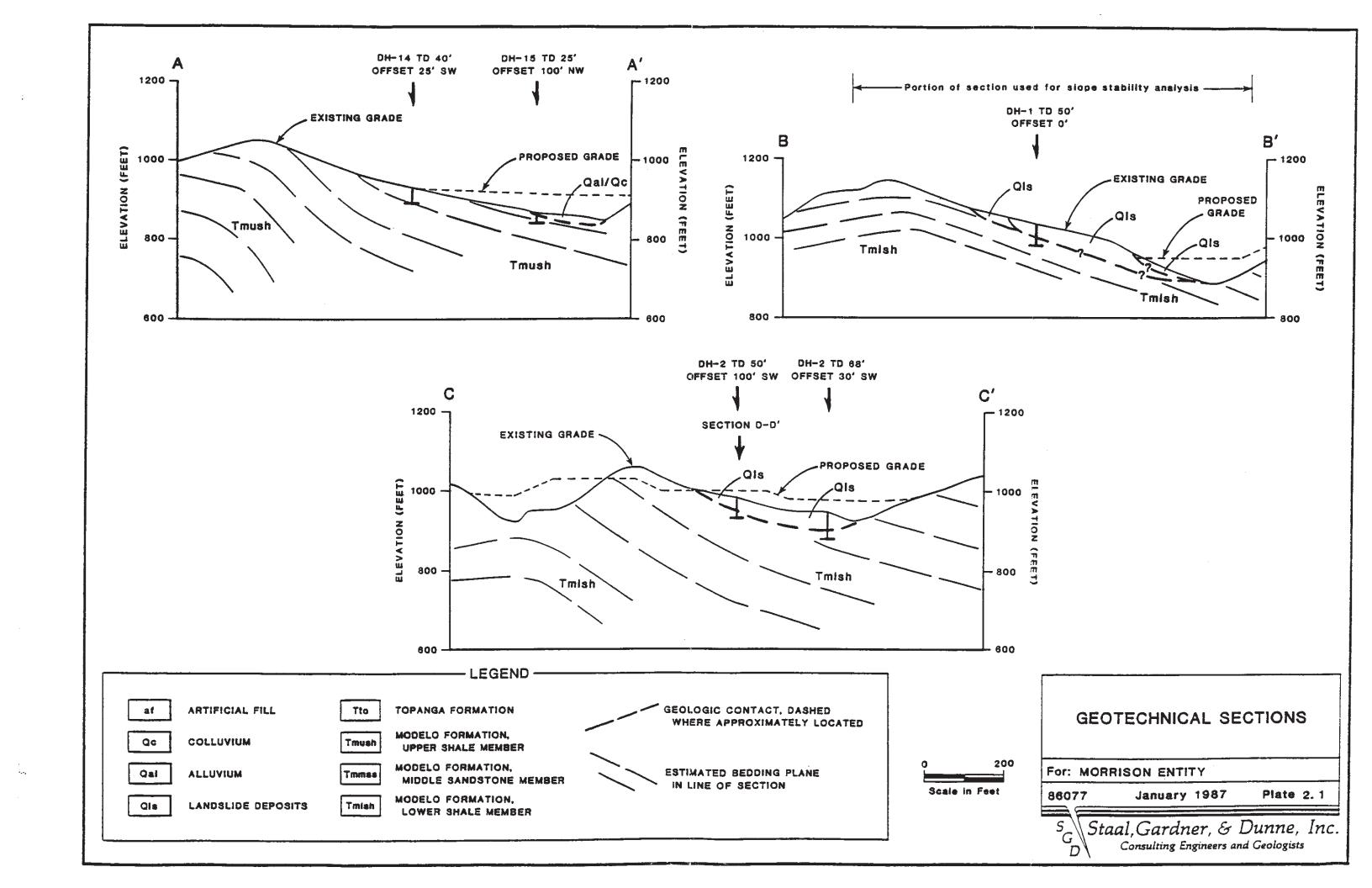
SCALE: 1" = 40' CONTOUR INTERVAL = 10 FOOT

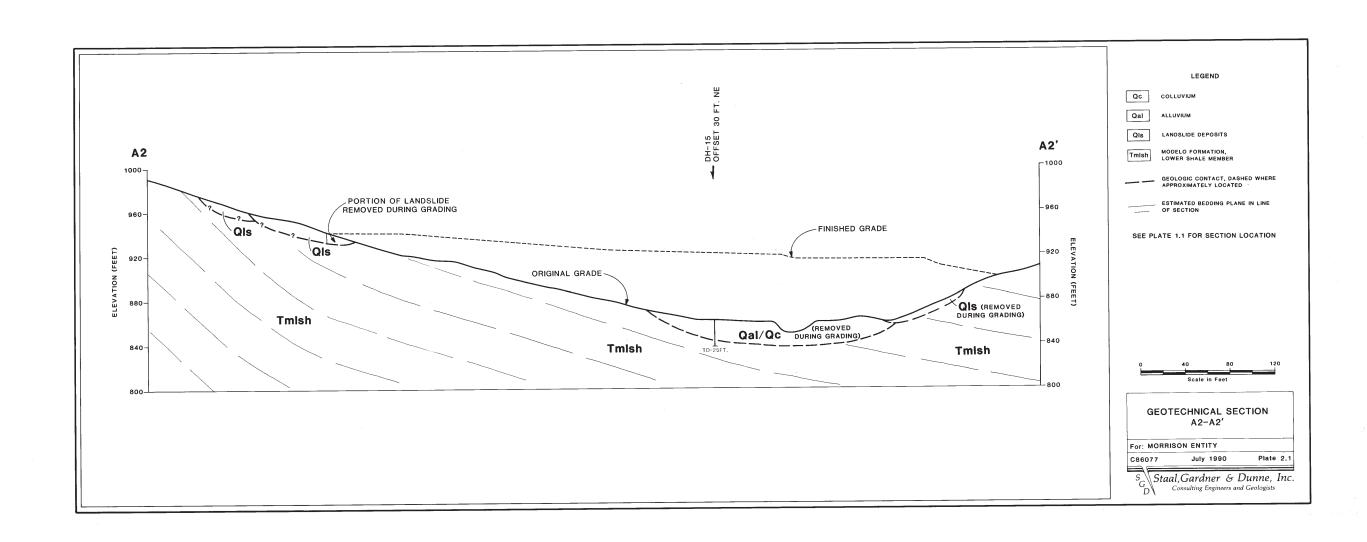
LOS ANGELES COUNTY DEPARTMENT OF PUBLIC WORKS

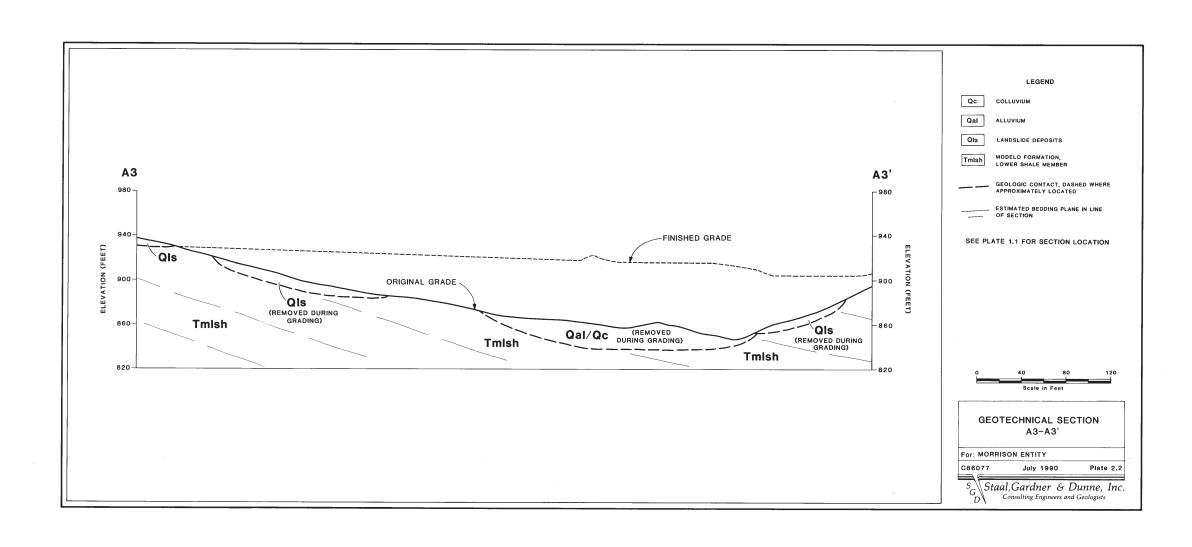
GEOTECHNICAL AND MATERIALS ENGINEERING DIVISION


GEOLOGIC MAP & CROSS-SECTION GATES CANYON PARK INFILTRATION STUDY UNINCORPORATED CALABASAS AREA

Date: Jan 2017 Drafted by: KLB Scale: As Shown


FIGURE 3


Appendix A


As-Built Geotechnical Map and Cross-Sections (TR 39509)

Appendix B

Log of Borings

LOS ANGELES COUNTY DEPARTMENT OF PUBLIC WORKS GEOTECHNICAL AND MATERIALS ENGINEERING DIVISION

SUMMARY LOG OF BORING B-1					
PROJECT Gates Canyon Park PROJECT ID GME000279 PAGE 1 OF 4					
CLIENT Watershed Management Division ELEVATION _~955' LOGGED BY K. Burger/Y. Halpern					
TYPE/DIAMETER OF BC	ORING	24"	diameter/Lo-Drill DRILLER Roy Bros TOTAL DEPTH 80'		
DATE(S) <u>5/23/2016</u>		L	OCATION See Boring Location Map		
			ns that are valid only for the specific date and location of the boring. Subsurface conditions vary between borings and with time. sing visual classification methods and may vary from descriptions/classifications based on laboratory testing.		
COMMENTS INTERPRETATIONS ATTITUDES	GRAPHIC	DEPTH (FT.)	DESCRIPTION		
		- 0 - 1 - 2 - 3 - 4	Surface is soil with dried grass 0' - 23' Colluvium, small angular rock fragments in sandy silt, medium dense, dark brown. © 5' randomly oriented rock debris, highly weathered shale fragments		
@ 10' easy drilling		- 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13	 © 5' randomly oriented rock debris, highly weathered shale fragments © 13' very to extremely loose rocks, randomly oriented rock fragments in a loose sandy clay matrix. 		
@ 15' harder drilling @ 16.5' - 18' ring sample (1R)		- 15 - 16 - 17 - 18			
Caved zone - belled to 1 ft beyond bore diameter. Unsafe to downhole log below 19'		- 19 - 20 - 21 - 22 - 23			
		- 24 - 25	23' - TD Bedrock, shale (Tush), weathered, bedding not well defined, mottled gray-brown with orange mottling.		

LOS ANGELES COUNTY DEPARTMENT OF PUBLIC WORKS GEOTECHNICAL AND MATERIALS ENGINEERING DIVISION

SUMMARY LOG OF BORING B-1				
PROJECT Gates Canyon Park PROJECT ID GME000279 PAGE 2 OF 4				
CLIENT Watershed Ma				
TYPE/DIAMETER OF BO	ORING	24" (diameter/Lo-Drill DRILLER Roy Bros TOTAL DEPTH 80'	
DATE(S) <u>5/23/2016</u>			OCATION See Boring Location Map	
			s that are valid only for the specific date and location of the boring. Subsurface conditions vary between borings and with time. sing visual classification methods and may vary from descriptions/classifications based on laboratory testing.	
COMMENTS INTERPRETATIONS ATTITUDES	GRAPHIC	ОЕРТН (FT.)	DESCRIPTION	
@ 26' harder drilling		- 25 - 26 - 27 - 28 - 29		
@ 30' - 31.5' ring sample (2R) @ 32' easier drilling		- 30 - 31 - 32 - 33 - 34 - 35 - 36 - 37 - 38 - 40 - 41 - 42 - 43 - 44 - 45 - 46 - 47 - 48 - 49	@ 30' silicious zone, hard.	
		- 46 - 47 - 48		

LOS ANGELES COUNTY DEPARTMENT OF PUBLIC WORKS GEOTECHNICAL AND MATERIALS ENGINEERING DIVISION

		JMMARY LOG OF BORING B-1
PROJECT Gates Canyo		PROJECT ID GME000279 PAGE 3 OF 4
CLIENT Watershed Mana		
TYPE/DIAMETER OF BOF		liameter/Lo-Drill DRILLER Roy Bros TOTAL DEPTH
DATE(S) <u>5/23/2016</u>		DCATION See Boring Location Map
Note: This log contains observations Lithologic descripti	and interpretations	that are valid only for the specific date and location of the boring. Subsurface conditions vary between borings and with time. In visual classification methods and may vary from descriptions/classifications based on laboratory testing.
COMMENTS INTERPRETATIONS ATTITUDES	GRAPHIC DEPTH (FT.)	DESCRIPTION
@ 60' - 61.5' ring sample (3R) @ 61' tip of auger is wet	- 50 - 51 - 52 - 53 - 54 - 55 - 56 - 57 - 58 - 59 - 60 - 61 - 62 - 63 - 64 - 65 - 66 - 67 - 68 - 69 - 70 - 71 - 72 - 73 - 74 - 75	@ 61' seepage @ 67' hard zone, slight odor

LOS ANGELES COUNTY DEPARTMENT OF PUBLIC WORKS GEOTECHNICAL AND MATERIALS ENGINEERING DIVISION

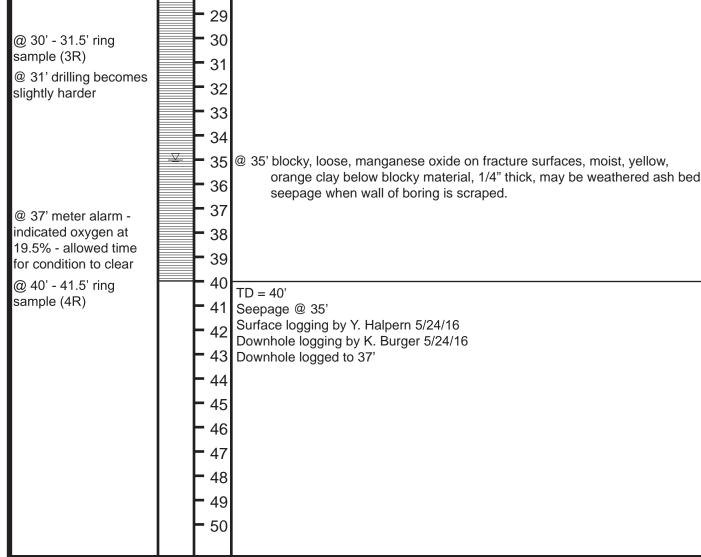
SUMMARY LOG OF BORING _B-1_				
PROJECT Gates Can	von Pa		PROJECT ID GME000279 PAGE 4 OF 4	
CLIENT Watershed Mai				
TYPE/DIAMETER OF BO	DRING	24" (
DATE(S) <u>5/23/2016</u>			OCATION See Boring Location Map	
			s that are valid only for the specific date and location of the boring. Subsurface conditions vary between borings and with time. sing visual classification methods and may vary from descriptions/classifications based on laboratory testing.	
COMMENTS INTERPRETATIONS ATTITUDES	GRAPHIC	DEPTH (FT.)	DESCRIPTION	
		- 75		
		- 76		
		- 77		
		- 78		
		- 79		
		- 80		
		- 81	TD = 80' Seepage @ 61' on 5/23/16	
		- 82	Water up to 77' on 5/24/16	
		– 83	Surface logging by Y. Halpern Downhole logging by K. Burger	
		- 84	Downhole logged to 19' due to hazardous caving below 19'	
		– 85		
		– 86		
		– 87		
		– 88		
		- 89		
		- 90		
		- 91		
		92		
		- 93		
		- 94		
		- 95		
		96		
		97		
		98		
		- 99		
		- 100		

LOS ANGELES COUNTY DEPARTMENT OF PUBLIC WORKS GEOTECHNICAL AND MATERIALS ENGINEERING DIVISION SUMMARY LOG OF BORING B-2 PROJECT Gates Canyon Park PROJECT ID GME000279 PAGE 1 OF 3 CLIENT WMD ELEVATION _~945' LOGGED BY K. Burger / Y. Halpern DRILLER Roy Bros TOTAL DEPTH 60' TYPE/DIAMETER OF BORING 24" diameter/Lo-Drill LOCATION See Boring Location Map DATE(S) 5/24/2016 Note: This log contains observations and interpretations that are valid only for the specific date and location of the boring. Subsurface conditions vary between borings and with time. Lithologic descriptions are derived using visual classification methods and may vary from descriptions classifications based on laboratory testing. DEPTH (FT. **SRAPHIC COMMENTS INTERPRETATIONS** DESCRIPTION **ATTITUDES** Surface is soil with dried grass. 0 0' - 16' 8" Colluvium, highly weathered, rock fragments, blocky, jumbled, loose, soft clayey matrix. 2 3 9 10 12 13 15 16 @ 17' harder zone 17 @ 16' 8" - TD Bedrock, shale (Tush), clayey, weathered, bedding not well defined, mottled gray-brown with orange-brown. 18 19 20 21

22232425

LOS ANGELES COUNTY DEPARTMENT OF PUBLIC WORKS GEOTECHNICAL AND MATERIALS ENGINEERING DIVISION

PROJECT ID GME000279 PAGE 2 OF 3 CLIENT WMD ELEVATION ~945' LOGGED BY K. Burger / Y. Halpern TYPE/DIAMETER OF BORING 24" diameter/Lo-Drill DRILLER Roy Bros TOTAL DEPTH 60' DATE(S) 5/24/2016 LOCATION See Boring Location Map Note: This log contains observations and interpretations that are valid only for the specific date and location of the boring. Subsurface conditions vary between borings and with time. Lithologic descriptions are derived using visual classification methods and may vary from descriptions/classifications based on laboratory testing. COMMENTS INTERPRETATIONS ATTITUDES DESCRIPTION DESCRIPTION 25 26 26 27 clayey, orangish-tan and manganese oxide with oxidation along fracture and bedding, bedding not well defined, oxidation with gypsum veining, normal to bedding. 29 27/11" contact marked by color change, becomes gray, mottled brown and	
TYPE/DIAMETER OF BORING 24" diameter/Lo-Drill DRILLER Roy Bros TOTAL DEPTH 60' DATE(S) 5/24/2016 LOCATION See Boring Location Map Note: This log contains observations and interpretations that are valid only for the specific date and location of the boring. Subsurface conditions vary between borings and with time. Lithologic descriptions are derived using visual classification methods and may vary from descriptions/classifications based on laboratory testing. COMMENTS INTERPRETATIONS ATTITUDES DESCRIPTION 25 26 26' very hard, silicious layer, whitish with some oxidation staining along bedding. 27 clayey, orangish-tan and manganese oxide with oxidation along fractur and bedding, bedding not well defined, oxidation with gypsum veining, normal to bedding. 29 27'11" contact marked by color change, becomes gray, mottled brown and	3
DATE(S) 5/24/2016 LOCATION See Boring Location Map Note: This log contains observations and interpretations that are valid only for the specific date and location of the boring. Subsurface conditions vary between borings and with time. Lithologic descriptions are derived using visual classification methods and may vary from descriptions/classifications based on laboratory testing. COMMENTS INTERPRETATIONS ATTITUDES DESCRIPTION 25 26 26 © 26' very hard, silicious layer, whitish with some oxidation staining along bedding. 27 28 29 © 27' clayey, orangish-tan and manganese oxide with oxidation along fracture and bedding, bedding not well defined, oxidation with gypsum veining, normal to bedding. 29 © 27'11" contact marked by color change, becomes gray, mottled brown and	
Note: This log contains observations and interpretations that are valid only for the specific date and location of the boring. Subsurface conditions vary between borings and with time. Lithologic descriptions are derived using visual classification methods and may vary from descriptions/classifications based on laboratory testing. COMMENTS INTERPRETATIONS ATTITUDES DESCRIPTION 25 26 26' very hard, silicious layer, whitish with some oxidation staining along bedding. 27' clayey, orangish-tan and manganese oxide with oxidation along fractur and bedding, bedding not well defined, oxidation with gypsum veining, normal to bedding. 29 27'11" contact marked by color change, becomes gray, mottled brown and	60'
COMMENTS INTERPRETATIONS ATTITUDES © 25 26 27 clayey, orangish-tan and manganese oxide with oxidation along fractur and bedding, bedding normal to bedding. 27 contact marked by color change, becomes gray, mottled brown and	
INTERPRETATIONS ATTITUDES DESCRIPTION 25 26 @ 26' very hard, silicious layer, whitish with some oxidation staining along bedding. 27 @ 27' clayey, orangish-tan and manganese oxide with oxidation along fractur and bedding, bedding not well defined, oxidation with gypsum veining, normal to bedding. 29 @ 27'11" contact marked by color change, becomes gray, mottled brown and	ne.
 26 @ 26' very hard, silicious layer, whitish with some oxidation staining along bedding. 27 @ 27' clayey, orangish-tan and manganese oxide with oxidation along fractur and bedding, bedding not well defined, oxidation with gypsum veining, normal to bedding. 29 @ 27'11" contact marked by color change, becomes gray, mottled brown and 	
gray, bedding not well defined. 31	ctures ing, and osum


LOS ANGELES COUNTY DEPARTMENT OF PUBLIC WORKS GEOTECHNICAL AND MATERIALS ENGINEERING DIVISION SUMMARY LOG OF BORING B-2 PROJECT Gates Canyon Park PROJECTID GME000279 PAGE 3 OF 3 CLIENT WMD ELEVATION _~945' LOGGED BY K. Burger / Y. Halpern TYPE/DIAMETER OF BORING 24" diameter/Lo-Drill DRILLER Roy Bros TOTAL DEPTH 60' DATE(S) <u>5/24/2016</u> LOCATION See Boring Location Map Note: This log contains observations and interpretations that are valid only for the specific date and location of the boring. Subsurface conditions vary between borings and with time. Lithologic descriptions are derived using visual classification methods and may vary from descriptions classifications based on laboratory testing. DEPTH (FT. **SRAPHIC COMMENTS INTERPRETATIONS** DESCRIPTION **ATTITUDES** 50 51 @ 51' dark gray-brown, very hard, bedding distinguished by varying hardness. 52 53 @ 53' fine sandy layer, tight, hard, 4" thick gypsum bed, clayey shale below. 54 55 56 58 @ 58' fine root hairs scattered around hole. 59 60 TD = 60'Weeping @ 40'6" Surface logging by Y. Halpern 5/24/16 Downhole logging by K. Burger 5/24/16 63 Downhole logged to 58' 64 65 66 67 68 69 70 71 72 73 74

75

LOS ANGELES COUNTY DEPARTMENT OF PUBLIC WORKS GEOTECHNICAL AND MATERIALS ENGINEERING DIVISION

SUMMARY LOG OF BORING B-3				
PROJECT Gates Cany	yon Pa	ırk	PROJECT ID GME000279 PAGE 1 OF 2	
CLIENT WMD			ELEVATION _~935' LOGGED BY K. Burger / Y. Halpern	
TYPE/DIAMETER OF BO	DRING	24"	diameter/Lo-Drill DRILLER Roy Bros TOTAL DEPTH 40'	
DATE(S) <u>5/24/2016</u>		L	OCATION See Boring Location Map	
			s that are valid only for the specific date and location of the boring. Subsurface conditions vary between borings and with time. sing visual classification methods and may vary from descriptions/classifications based on laboratory testing.	
COMMENTS INTERPRETATIONS ATTITUDES	GRAPHIC	ОЕРТН (FT.)	DESCRIPTION	
		- 0 - 1 - 2 - 3 - 4 - 5	Surface is soil with dried grass 0' - 6' 3" Colluvium, angular rock fragments 2-3" diameter, light brown to tan, dry to moist.	
@ 10' - 11.5' ring sample (1R) @ 10' 6" b - N44W, 20N f - E-W, 77S		- 7 - 8 - 9 - 10 - 11 - 12 - 13	6' 3" - TD Bedrock, shale (Tush) thinly bedded shale, well bedded, blocky, fine grained, well cemented. @ 10' 6" blocky, hard, fractured, less clayey, oxidation on fracture surfaces, orange staining on fractures.	
		- 14 - 15 - 16	@ 14' 9" manganese oxidation on fracture surafaces, dark gray.	
@ 17' 6" j - N19W, 88W j - N88W, 85S		- 17 - 18 - 19	@ 17' 6" intersecting joint set, oxidized, yellow-orange staining on all surfaces.	
@ 20' - 21.5' ring sample (2R)		- 20 - 21 - 22	@ 20 - 21' gypsum visible on fracture surface (micro-crystalline)	
		- 23 - 24 - 25	@ 22 - 35' formation becomes tight, hard, oxidized layers interbedded with gypsum, becomes dark brown to gray with oxidation, bedding accentuated by variations in color, minor fracturing.	

LOS ANGELES COUNTY DEPARTMENT OF PUBLIC WORKS GEOTECHNICAL AND MATERIALS ENGINEERING DIVISION SUMMARY LOG OF BORING B-3 PROJECT ID GME000279 PAGE 2 OF 2 PROJECT Gates Canyon Park CLIENT WMD ELEVATION _~935' LOGGED BY K. Burger / Y. Halpern TYPE/DIAMETER OF BORING 24" diameter/Lo-Drill DRILLER Roy Bros TOTAL DEPTH 40' LOCATION See Boring Location Map DATE(S) <u>5/24/2016</u> Note: This log contains observations and interpretations that are valid only for the specific date and location of the boring. Subsurface conditions vary between borings and with time. Lithologic descriptions are derived using visual classification methods and may vary from descriptions classifications based on laboratory testing. DEPTH (FT. **SRAPHIC COMMENTS INTERPRETATIONS** DESCRIPTION **ATTITUDES** 25 26 27 28 29 30 @ 30' - 31.5' ring sample (3R) 31 @ 31' drilling becomes slightly harder 33 34 35 @ 35' blocky, loose, manganese oxide on fracture surfaces, moist, yellow, orange clay below blocky material, 1/4" thick, may be weathered ash bed, 36

		GEOTE	IGELES COUNTY DEPARTMENT OF PUBLIC WORKS CHNICAL AND MATERIALS ENGINEERING DIVISION
	_		UMMARY LOG OF BORING <u>B-4</u>
PROJECT Gates Cany	on Pa	ırk	PROJECT ID GME000279 PAGE 1 OF 3
CLIENT WMD			ELEVATION ~938' LOGGED BY K. Burger / Y. Halpern
TYPE/DIAMETER OF BO	DRING		diameter/Lo-Drill DRILLER Roy Bros TOTAL DEPTH 50.5'
DATE(S) <u>5/26/2016</u> Note: This log contains observation	ons and int		OCATION See Boring Location Map us that are valid only for the specific date and location of the boring. Subsurface conditions vary between borings and with time.
Lithologic descr	iptions are		sing visual classification methods and may vary from descriptions/classifications based on laboratory testing.
COMMENTS INTERPRETATIONS ATTITUDES	GRAPHIC	ОЕРТН (FT.)	DESCRIPTION
		- 0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 8 9 10 1 12 2 1 2 2 3 1 2 2 4 1 2 5	@ 22' suggestion of bedding, orange oxidation bedded material has variable hardnesses.

LOS ANGELES COUNTY DEPARTMENT OF PUBLIC WORKS GEOTECHNICAL AND MATERIALS ENGINEERING DIVISION

GEOTECHNICAL AND MATERIALS ENGINEERING DIVISION SUMMARY LOG OF BORING _B-4_											
PROJECT Gates Canyor		PROJECT ID GME000279 PAGE 2 OF 3									
CLIENT WMD		ELEVATION _~938' LOGGED BY K. Burger / Y. Halpern									
TYPE/DIAMETER OF BORI	ING <u>24" c</u>	diameter/Lo-Drill DRILLER Roy Bros TOTAL DEPTH 50.5'									
DATE(S) <u>5/26/2016</u>	LC	OCATION See Boring Location Map									
		that are valid only for the specific date and location of the boring. Subsurface conditions vary between borings and with time. ng visual classification methods and may vary from descriptions/classifications based on laboratory testing.									
COMMENTS INTERPRETATIONS ATTITUDES	GRAPHIC DEPTH (FT.)	DESCRIPTION									
@ 40' - 41.5' ring sample (1R) @ 41' b-N24E, 22S @ 41' harder drilling @ 46' b-N85E, 28N (approximate)	- 29 - 30 - 31 - 32 - 33 - 34 - 35 - 36 - 37 - 38 - 39 - 40 - 41 - 42 - 43 - 44 - 45 - 46	 @ 28' 6" internal shearing visible, 4 - 6" thick, internally sheared along bed, increased moisture, undulatory around hole, discontinuous, more prevalent on uphill side of hole (NW), thinner on downslope side. @ 31' variable hardness, suggestion of bedding. @ 35' 6" internal shearing in slightly harder layer, moisture on surfaces, irregular oxidation. @ 36' highly oxidized. @ 40' gray mottling, poorly bedded. @ 41' hard white layer, 1/16" thick, silty clay layers below, tan, 1/8-1/16" thick, light tan interlayered with gray siltstone beds. @ 46' distinct bedding plane. @ 46' 6" ash bed, 1/4" thick, tan gray, within hard gray siltstone, undulatory. @ 47' rock becomes more indurated. 									

LOS ANGELES COUNTY DEPARTMENT OF PUBLIC WORKS GEOTECHNICAL AND MATERIALS ENGINEERING DIVISION SUMMARY LOG OF BORING B-4 PROJECT Gates Canyon Park PROJECT ID GME000279 PAGE 3 OF 3 ELEVATION _~938' LOGGED BY K. Burger / Y. Halpern CLIENT WMD DRILLER Roy Bros TOTAL DEPTH 50.5' TYPE/DIAMETER OF BORING 24" diameter/Lo-Drill DATE(S) <u>5/26/2016</u> LOCATION See Boring Location Map Note: This log contains observations and interpretations that are valid only for the specific date and location of the boring. Subsurface conditions vary between borings and with time. Lithologic descriptions are derived using visual classification methods and may vary from descriptions classifications based on laboratory testing. DEPTH (FT. **SRAPHIC COMMENTS INTERPRETATIONS** DESCRIPTION **ATTITUDES** 50 TD = 50.5'51 Ground water or seepage not encountered Surface logging by Y. Halpern 5/26/16 Downhole logging by K. Burger 5/26/16 Downhole logged to 47' 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

74 75

LOS ANGELES COUNTY DEPARTMENT OF PUBLIC WORKS GEOTECHNICAL AND MATERIALS ENGINEERING DIVISION											
		S	UMMARY LOG OF BORING <u>B-5</u>								
PROJECT Gates Cany	yon Pa	ırk	PROJECTID GME000279 PAGE 1 OF 3								
CLIENT WMD			ELEVATION <u>~950'</u> LOGGED BY <u>Y. Halpern</u>								
TYPE/DIAMETER OF BO	ORING	24"	diameter/ Flight Auger with Lo-Drill DRILLER Roy Bros TOTAL DEPTH 60.5'								
DATE(S) <u>5/25/2016</u>			OCATION Behind tennis court #2								
Note: This log contains observations and interpretations that are valid only for the specific date and location of the boring. Subsurface conditions vary between borings and vary from descriptions/classifications based on laboratory testing.											
COMMENTS INTERPRETATIONS ATTITUDES	GRAPHIC	ОЕРТН (FT.)	DESCRIPTION								
ATTITUDES	GR	- 0 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19	Silty sand cuttings with gravel (angular) 2-4" - diameter, dry to moist color darker with depth								
		- 20 - 21 - 22 - 23 - 24 - 25									

LOS ANGELES COUNTY DEPARTMENT OF PUBLIC WORKS GEOTECHNICAL AND MATERIALS ENGINEERING DIVISION

	(SUMMARY LOG OF BORING DIVISION SUMMARY LOG OF BORING _B-5_
PROJECT Gates Can	yon Pa	ark	PROJECT ID GME000279 PAGE 2 OF 3
CLIENT WMD			ELEVATION <u>~950'</u> LOGGED BY <u>Y. Halpern</u>
TYPE/DIAMETER OF BO	ORING	24"	" diameter/ Flight auger with Lo-Drill DRILLER Roy Bros TOTAL DEPTH 60.
DATE(S) <u>5/25/2016</u>		L	LOCATION Behind tennis court #2
			ions that are valid only for the specific date and location of the boring. Subsurface conditions vary between borings and with time. I using visual classification methods and may vary from descriptions/classifications based on laboratory testing.
COMMENTS INTERPRETATIONS ATTITUDES	GRAPHIC	ОЕРТН (FT.)	DESCRIPTION
@ 30'- 33' ring sample (1R) @ 41' drilling becomes slightly		- 25 - 26 - 27 - 28 - 29 - 30 - 31 - 32 - 33 - 35 - 36 - 37 - 38 - 39 - 40 - 41 - 42	@ 30' clayey, oxidation, mudstone, thin reddish layering clayey, oxidation, mudstone, thin reddish layering description: a way of the control of the cont
harder		- 42 - 43	
		- 44	
		- 45	
		- 46	
		- 47	
		- 48	
		- 49	
		- 50	

			IGELES COUNTY DEPARTMENT OF PUBLIC WORKS										
	GEOTECHNICAL AND MATERIALS ENGINEERING DIVISION SUMMARY LOG OF BORING B-5												
	_												
PROJECT Gates Cany	yon Pa	<u>ark</u>	PROJECT ID GME000279 PAGE 3 OF 3										
CLIENT WMD			ELEVATION _~950' LOGGED BY Y. Halpern										
TYPE/DIAMETER OF BO	DRING		diameter/ Flight auger with Lo-Drill DRILLER Roy Bros TOTAL DEPTH 60.5'										
DATE(S) <u>5/25/2016</u>			OCATION Behind tennis court #2										
Note: This log contains observation Lithologic descr	riptions are	erpretation: derived us	s that are valid only for the specific date and location of the boring. Subsurface conditions vary between borings and with time. sing visual classification methods and may vary from descriptions/classifications based on laboratory testing.										
COMMENTS	ပ္ခ	(FT.)											
INTERPRETATIONS	GRAPHIC		DESCRIPTION										
ATTITUDES	GR,	ОЕРТН	DEGGIII HOIN										
		50											
		- 51											
		52											
		53											
		- 54											
		- 55											
		56											
		- 57	@ 57' seepage, clayey piece at tip										
		- 58											
		- 59											
		- 60	Ground water encountered at 60'										
		i I	TD = 60.5'										
	'		Not downhole logged										
	'	62	Surface logging by Y. Halpern 5/25/16 Seepage at 57'										
	'	I I	Standing water at 60'										
	'	64	, and the second										
	'	- 65											
	'	66											
	'	67											
	'	- 68											
	'	- 69											
	'	70											
	'	71											
	'	- 72											
	'	- 73											
	'	- 74											
	'	75											

LOS ANGELES COUNTY DEPARTMENT OF PUBLIC WORKS GEOTECHNICAL AND MATERIALS ENGINEERING DIVISION

		S	UMMARY LOG OF BORING B-6
PROJECT Gates Cany	on Pa	ark	PROJECT ID GME000279 PAGE 1 OF 2
CLIENT WMD			ELEVATION _~955' LOGGED BY K. Burger / Y. Halpern
TYPE/DIAMETER OF BO	DRING	24"	diameter DRILLER Roy Bros TOTAL DEPTH 60'
DATE(S) <u>5/26/2016</u>		L	OCATION See Boring Location Map
			s that are valid only for the specific date and location of the boring. Subsurface conditions vary between borings and with time. sing visual classification methods and may vary from descriptions/classifications based on laboratory testing.
COMMENTS INTERPRETATIONS ATTITUDES	GRAPHIC	ОЕРТН (FT.)	DESCRIPTION
		0 1 2 3 4 5 6 7 8 9 10 11	0-6.5' Colluvium - Soil brown/ black, clayey with shale rock fragments, mostly matrix 6.5' to TD - graded contact Shale, white, suggestion of bedding, but no continuous layers
		- 11 - 12 - 13 - 14 - 15 - 16 - 17	@ 12' jumbled rock, loose fragments, variable hardness, no bedding, tight material, clayey
@ 18' 4" b- N78W, 30E		- 18	@18.5' suggestion of bedding, not sure if continuous around hole @19' 3"
		19	rock is slightly dilated below, somewhat coherent, whitish tan, clayey (minor fracturing, light oxidation on fractures @ 24')
@ 20'- 21.5' ring sample (1R)		- 20 - 21 - 22 - 23 - 24 - 25	(minor fracturing, light oxidation on fractures @ 24) @19.5' bedded towards into slope, dipping to NW, light tan, oxidation, layer continuous, hard, well bedded

LOS ANGELES COUNTY DEPARTMENT OF PUBLIC WORKS GEOTECHNICAL AND MATERIALS ENGINEERING DIVISION

		SUMMARY LOG OF BORING DIVISION BLOOM BLOOM BORING B-6
PROJECT Gates Can		PROJECT ID GME000279 PAGE 2 OF 2
CLIENT WMD		ELEVATION _~955' LOGGED BY K. Burger / Y. Halpern
TYPE/DIAMETER OF BO	DRING 24"	diameter DRILLER Roy Bros TOTAL DEPTH 60'
DATE(S) <u>5/26/2016</u>		OCATION See Boring Location Map
		ns that are valid only for the specific date and location of the boring. Subsurface conditions vary between borings and with time. using visual classification methods and may vary from descriptions/classifications based on laboratory testing.
COMMENTS INTERPRETATIONS ATTITUDES	GRAPHIC DEPTH (FT.)	DESCRIPTION
@ 27' b - N69E, 25S	- 25 - 26 - 27	hard rock pieces of more jumbled, varied rock fragments, oxidation @ 27' clayey zone 6-8" thick, very soft continuous around hole,
	- 28 - 29 - 30 - 31 - 32 - 33 - 34 - 35 - 36 - 37	shearing along bedding planes, polished surface below soft clay @ 29' oxidized claystone, orange, oxidation, suggestion of bedding, interlayered tan with orange oxidation clayey, stiff @ 35' gray-brown, hint of bedding, hard material
	- 38 - 39 - 40 - 41 - 42 - 43 - 44 - 45 - 46 - 47 - 48 - 49 - 50	 @ 43' 8" ash bed 1" thick, continuous around hole (high pt) @ 44' 9" hard material below ash bed, gray (low pt) @ 50' 6" bottom of tape Total Depth 60'
		Downhole logged by K. Burger to 50' 6" Groundwater or seepage not encountered

LOS ANGELES COUNTY DEPARTMENT OF PUBLIC WORKS GEOTECHNICAL AND MATERIALS ENGINEERING DIVISION SUMMARY LOG OF BORING B-7 PROJECT Gates Canyon Park PROJECT ID GME000279 PAGE 1 OF 3 CLIENT WMD ELEVATION ~960' LOGGED BY Y. Halpern TYPE/DIAMETER OF BORING 24" diameter/Lo-Drill TOTAL DEPTH 61' DRILLER Roy Bros DATE(S) <u>5/25/2016</u> LOCATION Behind Basketball Court Note: This log contains observations and interpretations that are valid only for the specific date and location of the boring. Subsurface conditions vary between borings and with time. Lithologic descriptions are derived using visual classification methods and may vary from descriptions classifications based on laboratory testing. DEPTH (FT.) **SRAPHIC COMMENTS INTERPRETATIONS** DESCRIPTION **ATTITUDES** 0 Dark angular pieces at surface to 2' - depth 1 2 3 @ ~4' tan-brown, sandy cuttings 5 6 8 9 10 11 12 13 14 15 16 **1**7 18 @ 18' reddish brown cuttings, oxidized, with 6-8" angular gravel pieces 19 20 21 22 23 24 25 @ 25' seepage, red clayey material in tip

LOS ANGELES COUNTY DEPARTMENT OF PUBLIC WORKS GEOTECHNICAL AND MATERIALS ENGINEERING DIVISION SUMMARY LOG OF BORING B-7 PROJECT Gates Canyon Park PROJECTID GME000279 PAGE 2 OF 3 ELEVATION _~960' LOGGED BY _____Y. Halpern CLIENT WMD TYPE/DIAMETER OF BORING 24" diameter/Lo-Drill DRILLER Roy Bros TOTAL DEPTH 61' LOCATION Behind Basketball Court DATE(S) <u>5/25/2016</u> Note: This log contains observations and interpretations that are valid only for the specific date and location of the boring. Subsurface conditions vary between borings and with time. Lithologic descriptions are derived using visual classification methods and may vary from descriptions classifications based on laboratory testing. DEPTH (FT.) **SRAPHIC COMMENTS INTERPRETATIONS** DESCRIPTION **ATTITUDES** 25 26 **-** 27 **-** 28 **-** 29 30 **3**1 33 34 35 @ 36' black/ dark gray cuttings 36 37 38 39 • 40 41 **-** 42 **4**3 • 44 45 **-** 46 47 48 49

50

LOS ANGELES COUNTY DEPARTMENT OF PUBLIC WORKS GEOTECHNICAL AND MATERIALS ENGINEERING DIVISION SUMMARY LOG OF BORING B-7 PROJECT Gates Canyon Park PROJECT ID GME000279 PAGE 3 OF 3 CLIENT WMD ELEVATION ~960' LOGGED BY Y. Halpern TYPE/DIAMETER OF BORING 24" diameter/Lo-Drill DRILLER Roy Bros TOTAL DEPTH 61' Note: This log contains observations and interpretations that are valid only for the specific date and location of the boring. Subsurface conditions vary between borings and with time. Lithologic descriptions are derived using visual classification methods and may vary from descriptions/classifications based on laboratory testing.
PROJECT Gates Canyon Park PROJECT ID GME000279 PAGE 3 OF 3 CLIENT WMD ELEVATION ~960' LOGGED BY Y. Halpern TYPE/DIAMETER OF BORING 24" diameter/Lo-Drill DRILLER Roy Bros TOTAL DEPTH 61' Note: This log contains observations and interpretations that are valid only for the specific date and location of the boring. Subsurface conditions vary between borings and with time.
CLIENT WMD ELEVATION ~960' LOGGED BY Y. Halpern TYPE/DIAMETER OF BORING 24" diameter/Lo-Drill DRILLER Roy Bros TOTAL DEPTH 61' DATE(S) 5/25/2016 LOCATION Behind Basketball Court Note: This log contains observations and interpretations that are valid only for the specific date and location of the boring. Subsurface conditions vary between borings and with time.
CLIENT WMD ELEVATION ~960' LOGGED BY Y. Halpern TYPE/DIAMETER OF BORING 24" diameter/Lo-Drill DRILLER Roy Bros TOTAL DEPTH 61' DATE(S) 5/25/2016 LOCATION Behind Basketball Court Note: This log contains observations and interpretations that are valid only for the specific date and location of the boring. Subsurface conditions vary between borings and with time.
TYPE/DIAMETER OF BORING 24" diameter/Lo-Drill DRILLER Roy Bros TOTAL DEPTH 61' DATE(S) 5/25/2016 LOCATION Behind Basketball Court Note: This log contains observations and interpretations that are valid only for the specific date and location of the boring. Subsurface conditions vary between borings and with time.
DATE(S) 5/25/2016 LOCATION Behind Basketball Court Note: This log contains observations and interpretations that are valid only for the specific date and location of the boring. Subsurface conditions vary between borings and with time.
Note: This log contains observations and interpretations that are valid only for the specific date and location of the boring. Subsurface conditions vary between borings and with time.
Littiologic descriptions are derived using visual classification metrious and may vary from descriptions classifications based on laboratory testing.
l l 🙃 l
COMMENTS INTERPRETATIONS ATTITUDES 29 LL DESCRIPTION
INTERPRETATIONS ATTITUDES 보다 보다 DESCRIPTION
······
50
50
51
52
53
54
55
56
F 57 H2O / Seepage encountered at 57' 5/26/16
- 58
- 59
60
$\boxed{ TD = 61'}$
CO Not Downhold James d
Surface logging by Y. Halpern 5/25/16 Seepage at 25, 57'
64 Seepage at 25, 37
– 65
– 66
67
– 68
69
70
72
72 73
73 74
74 75

LOS ANGELES COUNTY DEPARTMENT OF PUBLIC WORKS GEOTECHNICAL AND MATERIALS ENGINEERING DIVISION

GEOTECHNICAL AND MATERIALS ENGINEERING DIVISION SUMMARY LOG OF BORING <u>B-8</u>											
PROJECT Gates Can	yon Pa	ark		PROJECTID GME000279 PAGE 1 OF 3							
CLIENT WMD			ELEVATI	ION _~965' LOGGED BY K. Burger / Y. Halpern							
TYPE/DIAMETER OF BO	ORING	24"	diameter	DRILLER Roy Bros TOTAL DEPTH 60'							
DATE(S) <u>5/26/2016</u>			OCATION See B	Boring Location Map							
Note: This log contains observations and interpretations that are valid only for the specific date and location of the boring. Subsurface conditions vary between borings and with time. Lithologic descriptions are derived using visual classification methods and may vary from descriptions/classifications based on laboratory testing.											
COMMENTS INTERPRETATIONS ATTITUDES	GRAPHIC	ОЕРТН (FT.)		DESCRIPTION							
		- 0 - 1	@ 0'	TD Bedrock (Tush)							
@ 4' b - N76W, 34S		- 2 - 3 - 4 - 5 - 6 - 7 - 8		well bedded, light tan shade with orange brown oxidation on surfaces, blocky							
		- 10 - 11 - 12 - 13		not blocky, hard, white, some caving down to 12', "fairly coherent" clayey below 10.5' orange brown mottled with tan, rocky							
@14' 11" b - N7W, 57S		- 14 - 15	@14' 11" (high pt.)	1/2" thick orange, mottled with whitish yellow, dry, clayey layer							
			@16' 5" (low pt.)	12" continous around hole							
		- 17 - 18 - 10		cave zone - "blocky" to 20' 6" approximately 1' wide, abundant oxidation, yellow: orange							

2021

2324

25

@ 22' 10"

@ 24'6"

Right of tape, cave zone, "blocky", approximately 12" wide

fracture ~ 3" wide - entire arm to elbow into side wall

to 24' 8" at base of cave zone, white patch

at 25 ' 7 1/2"

LOS ANGELES COUNTY DEPARTMENT OF PUBLIC WORKS GEOTECHNICAL AND MATERIALS ENGINEERING DIVISION

	(MATERIALS ENGINEERING DIVISION LOG OF BORING <u>B-8</u>
PROJECT Gates Can	yon Pa	ark		PROJECT ID GME000279 PAGE 2 OF 3
CLIENT WMD	<u></u>		ELEVAT	
TYPE/DIAMETER OF BO	DRING	24"	diameter	DRILLER Roy Bros TOTAL DEPTH 60'
DATE(S) <u>5/26/2016</u>				Boring Location Map
Note: This log contains observation		erpretation	s that are valid only for the	ne specific date and location of the boring. Subsurface conditions vary between borings and with time. nethods and may vary from descriptions/classifications based on laboratory testing.
COMMENTS INTERPRETATIONS ATTITUDES	GRAPHIC	DEPTH (FT.)		DESCRIPTION
@ 27' 9 3/4" N10W, 35 S		- 25 - 26 - 27 - 28	@ 26' 5"	white ash bed continuous around hole 1 1/2" thick, poorly defined
		- 29 - 30	@ 29' 4 1/2"	weakly developed, brown dark/grey brown and orangish tan
		- 31 - 32 - 33 - 34 - 35 - 36 - 37 - 38 - 39 - 40 - 41	@ 30' 7"	blocky zone to 41' - (fault) ~ 1' wide
		- 42 - 43 - 44 - 45 - 46 - 47 - 48 - 49 - 50	@ 41' 9"	darker grey-brown, faint bedding, less oxidation, clayey

LOS ANGELES COUNTY DEPARTMENT OF PUBLIC WORKS GEOTECHNICAL AND MATERIALS ENGINEERING DIVISION												
		S	UMMARY LOG OF BORING <u>B-8</u>									
PROJECT Gates Can	yon Pa	ırk	PROJECT ID GME000279 PAGE 3 OF 3									
CLIENT WMD			ELEVATION ~965' LOGGED BY K. Burger / Y. Halpern									
TYPE/DIAMETER OF BO	DRING	<u>24"</u>	diameter DRILLER Roy Bros TOTAL DEPTH 60'									
DATE(S) <u>5/26/2016</u>			OCATION See Boring Location Map									
			is that are valid only for the specific date and location of the boring. Subsurface conditions vary between borings and with time. sing visual classification methods and may vary from descriptions/classifications based on laboratory testing.									
COMMENTS INTERPRETATIONS ATTITUDES	GRAPHIC	ОЕРТН (FT.)	DESCRIPTION									
		- 50 - 51 - 52 - 53 - 54 - 55 - 56 - 57 - 58 - 59	 © 54' 8" contact with hard material below, sandier, harder, less clayey © 55' 10" hard layer ends 									
		- 60 - 61 - 62 - 63 - 64 - 65 - 66 - 67 - 68 - 70 - 71 - 72 - 73 - 74 - 75	TD = 60' Ground water or seepage not encountered Surface logging by Y. Halpern 5/26/16 Downhole logging by K. Burger 5/26/16 Downhole logged to 60'									

LOS ANGELES COUNTY DEPARTMENT OF PUBLIC WORKS GEOTECHNICAL AND MATERIALS ENGINEERING DIVISION SUMMARY LOG OF BORING B-9 PROJECT Gates Canyon Park PROJECT ID PAGE 1 CLIENT WMD ELEVATION LOGGED BY Y. Halpern TYPE/DIAMETER OF BORING 18" diameter DRILLER Roy Bros TOTAL DEPTH 21' DATE(S) 5/26/2016 LOCATION Field Note: This log contains observations and interpretations that are valid only for the specific date and location of the boring. Subsurface conditions vary between borings and with time. Lithologic descriptions are derived using visual classification methods and may vary from descriptions classifications based on laboratory testing. DEPTH (FT. **SRAPHIC COMMENTS** INTERPRETATIONS DESCRIPTION **ATTITUDES** CL Lean Clay, (fill) med - moist to wet, trace sand, with angualr gravels, dense, up to 4" diameter large ~ 12-14" angular boulder visible in sidewall bedrock 2 3 @ 5' dark/ black clay with angular gravel, small boulder `8" diameter 5 6 @ 8' grey silt, ML, with some fine sand 8 9 10 @ 10' silty clay, dark grey **11** @ 11' back to clay, lean clay, dark brown/ black silt/ clay mix with some with some oxidation small pebbles and gravels, fine sand 12 13 14 15 @ 15' dense fill, with silt and clay ~ 6" angular bedrock in cuttings small cobbles and pebbles in fill, slight oxidation patches, dense fill 16 17 18 @ 18' hard rock at tip ~ 12" - thick 19 fill matrix, pebbles and gravels, trace oxidation pieces of shale 20 very dense 21 End of Boring @ 21' 22 23 24 25

Appendix C

Summary of Laboratory Results

SUMMARY OF LABORATORY TEST RESULTS

Geotechnical Laboratory

PROJECT NAME: Gates Canyon Park

TECHNICIAN: CL, EH

PCA: F21816i02

ENGINEER: Y. Halpern DATE: 10/17/2016

PAGE: 1 OF 1 updated 1/25/2017

BORING/S UNIFIED SOIL CLASSIFICATION				MOISTURE AND DRY DENSITY				DIRECT SHEAR				CHEMICAL							
AMPLE	DEPTH	Class.	ATTERBE	RG LIMITS	#4	#200	V field	m.c. _{field}	V max.	m.c. _{optimum}	Φ ult	C _{ult}	Φ maxi.	C _{maxi} .	рН	Min. Resistivity	CI	SO ₄	Field Classification
B-S	(ft)	Class.	LL	PI	% Pass	% Pass	pcf	%	pcf	%	Degree	psf	Degree	psf	рп	(K ohm-cm)	(ppm)	(ppm)	Classification
B1-1R	16.5-17.5	SM	56	20	70.3	26.8	83.3	17.0											Colluvium
B1-2R	30-31						83.5	24.4			30	300	33	300					Bedrock
B1-3R	60-61						84.2	21.9			37	314	38	314					Bedrock
B3-1R	10-11														6.80	*	4	24	Bedrock
B3-2R	20-21						80.5	25.6			41	150	43	150					Bedrock
B3-3R	30-31						75.6	24.3			45	79	45	79					Bedrock
B3-4R	40-41																		Bedrock
B4-1R	40-41						79.0	30.9											Bedrock
B5-1R	30-31						75.4	34.5											Bedrock
B6-1R	20-21						69.0	27.1											Bedrock

not enough sample

LOS ANGELES COUNTY DEPARTMENT OF PUBLIC WORKS

Material Engineering Division Geotechnical Laboratory

Chemical / Resistivity Report

PROJECT NAME:		Gates	s Canyon Park		
PCA:		I	F21816i02		
ENGINEER:	Y. Halpern				
_					_
BORING-SAMPLE:	B3-1R				
DEPTH:	10-11'				
MINIMUM RESISTIVITY (K ohms-cm):	n/a				
PH:	6.8				
CHLORIDE CONTENT (ppm):	4				
SO4 (ppm):	24				

Remarks:

LOS ANGELES COUNTY DEPARTMENT OF PUBLIC WORKS GEOTECHNICAL AND MATERIALS ENGINEERING DIVISION

Field Moisture and Density Data Sheet / ASTM D2216 & CTM 226

PROJECT NAME:		Gate Canyon Park				DATE TESTED:	10/6/2016	
PCA:		GF21816i02				TECHNICIAN:	CL	
PROJECT ENGINEER:		Y. Halpern				CHECKED BY:	EH	
	1	2	3	4	5	6	7	8

	1	2	3	4	Э	О	,	0
BORING NO./SAMPLE NO.	B1-1R	B4-1R	B5-1R	B6-1R				
LABORATORY NO.	n/a	n/a	n/a	n/a				
DEPTH (ft.)	16.5-17.5	40-41	30-31	20-21				
FIELD CLASSIFICATION	Colluvium	Mudstone	Mudstone	Hard BR				
SAMPLE SIZE (in.)	2.375	2.375	2.375	2.375				
NO. OF RINGS SAMPLED	4	6	6	4				
NO. OF RINGS TESTED	3	4	5	4				
VOLUME OF SOIL TESTED (ft ³)	0.00769	0.01025	0.01282	0.01025				
TARE + WET SOIL (lbs.)	1.20	1.66	2.05	1.50				
TARE (lbs.)	0.45	0.60	0.75	0.60				
WET SOIL (lbs.)	0.75	1.06	1.30	0.90				
WEIGHT OF #4 ROCK (lbs.)	0.19	0.00	0.00	0.00				
WEIGHT OF 3/4 ROCK (lbs.)	0.00	0.00	0.00	0.00				
WET FINES	0.56	1.06	1.30	0.90				
WET WEIGHT (gms.)FOR MOIST. CONTENT	51.3	108.5	146.9	107.3				
DRY WEIGHT FOR MOISTURE CONTENT (GMS)	41.3	82.9	109.2	84.4				
MOISTURE CONTENT OF FINES (%)	24.2	30.9	34.5	27.1				
DRY FINES	0.45	0.81	0.97	0.71				
TOTAL DRY SOIL (lbs.)	0.64	0.81	0.97	0.71				
TOTAL WATER (lbs.)	0.11	0.25	0.33	0.19				
COMPOSITE MOISTURE (%)	17.0	30.9	34.5	27.1				
% OF #4 ROCK	29.6	0.0	0.0	0.0				
% OF 3/4 ROCK	0.0	0.0	0.0	0.0				
COMPOSITE DRY DENSITY (pcf)	83.3	79.0	75.4	69.0				
Void Ratio:	0.98	1.09	1.19	1.40				
Degree of Saturation (%):	45.85	74.81	76.65	51.52				

LOS ANGELES COUNTY DEPARTMENT OF PUBLIC WORKS **Geotechnical and Materials Engineering Division**

Geotechnical Laboratory - ASTM D2487, D6913, C117, C136 SIEVE ANALYSIS WORKSHEET

PROJECT NAME: Gates Canyon Park

LAB. ID: n/a CLASSIFICATION: SM

DEPTH (FT): 16.5-17.5 **DATE TESTED:** 10/6/16

TESTED BY: CL CHECKED BY: EH

DATE CHECKED: 10/17/16

'% ret. #4 / % ret. #200 :

BORING / SAMPLE: B1-1R

If % Accum. Ret. #4 / % Accum. Ret. #200 < 50%, then Sand

COARSE (Plus no. 4)

If % Passing #200 < 50%, SILT, SAND or DUAL

PCA: F21816i02

ASTM	SIZE	RETAINED	% OF TOTAL	ACCUM. %	CCUM % ACCUM. % PASSI	
SIEVE NUMBER	(mm)	(lb)	OVEN DRY RETAINED	RETAINED	ACTUAL	SPEC. REQ.
6''	152.4					
3''	76.2					
1 1/2''	38.1					
1"	25.4					
3/4''	19.1				100.0	
3/8''	9.52	0.06	9.4	9.4	90.6	
No. 4	4.76	0.13	20.3	29.7	70.3	
PAN	0	0.56		MOISTU	RE CONTENT (OF FINES
TOTAL FI	RACTIONS	0.75			Wet WGT. (gm)	51.30
OVEN-I	DRY FINES	0.45			Dry WGT. (gm)	41.30
* TOTAL (OVEN-DRY				MOISTURE (%)	24.21

^{*} Cobbles not included in total oven-dry weight.

MOISTUR	MOISTURE CONTENT OF COURSE									
	Wet WGT. (gm)	0.19								
	Dry WGT. (gm)	0.18								
	MOISTURE (%)	0.06								

FINES (Minus no. 4)

WET WEIGH	IT OF FINES	51.30				
CALCULATI	ED OVEN-D	41.30				
WT. OF TOT	AL SAMPLI	E REPRESENTE	D BY FINES, OVEN-	DRY (gms):	58.71	
ASTM	I SIZE I RETAINED I ACCUM %	ACCUM. %	6 PASSING			
SIEVE NUMBER	(mm)	(gms)	OVEN DRY RETAINED	RETAINED	ACTUAL	SPEC. REQ.
8	2.38					
16	1.19					
30	0.59					
50	0.297					
100	0.149					
200	0.074			73.2	26.8	
PAN	0					
TOTAL F	RACTIONS	0.00	0.0]	Atterbe	erg Test
TOTAL DR		25.58	43.6		Liquid Limit	56
AFTER WE		25.50	13.0]	Plastic Limit	36
SIEVE L	OSS-GAIN	25.58			Plastic Index	20

LOS ANGELES COUNTY DEPARTMENT OF PUBLIC WORKS

GEOTECHNICAL & MATERIALS ENGINEERING DIVISION / Geotechnical Laboratory

LIQUID LIMIT AND PLASTICITY INDEX TESTS

ASTM D4318 / CTM 204

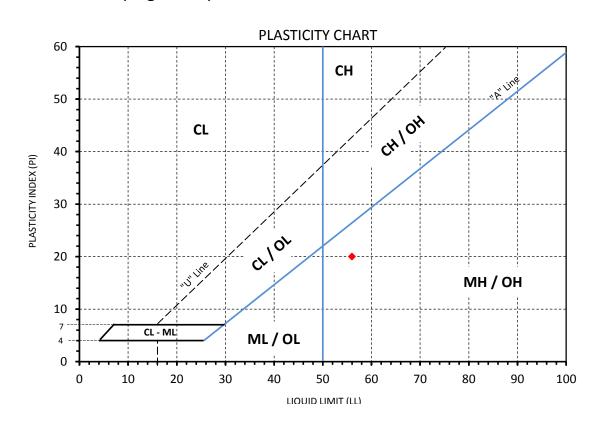
PROJECT NAME:	Gates Canyon Park	PCA:	F21816i02
LABORATORY ID:	n/a	BOR./SAMP.:	B1-1R
TESTED BY:	CL	DATE TESTED:	10/6/2016
CHECKED BY:	EH	DATE CHECKED:	10/17/2016
CLASSIFICATION:		- #(200):	26.8

LIQUID LIMIT

PLASTICITY INDEX

(LL-PL) = 20

Container Number	G19
Number of Blows (N)	24
Wet Sample + Tare (gms.)	15.9530
Dry Sample + Tare (gms.)	15.7580
Wt. of Water (gms.)	0.1950
Wt. of Tare (gms.)	15.4100
Wt. of Dry Soil (gms.)	0.3480
Moisture Content (%, W _n)	56.0


Liquid Limit 56 LL = $(W_n)(N/25)$ 0.121

PLASTIC LIMIT

No. of Samples Tested	3		
Run Number	1	2	3
Container Number	G0	G14	G24
Wet Sample + Tare (gms.)	7.2780	7.6970	6.8150
Dry Sample + Tare (gms.)	6.8152	7.1910	6.4981
Wt. of Water (gms.)	0.4628	0.5060	0.3169
Wt. of Tare (gms.)	5.5800	5.7840	5.5970
Wt. of Dry Soil (gms.)	1.2352	1.4070	0.9011
Moisture Content (%)	37.5	36.0	35.2

Plastic Limit (Avg. Value)

36

LOS ANGELES COUNTY DEPARTMENT OF PUBLIC WORKS GEOTECHNICAL AND MATERIALS ENGINEERING DIVISION

Field Moisture and Density Data Sheet / ASTM D2216 & CTM 226

PROJECT NAME:	Gates Canyon Park			Gates Canyon Park			Gates Canyon Park			11/14	/2016
PCA:	F21816i02				TECHNICIAN:	Carlos	Lopez				
PROJECT ENGINEER:	Y. Halpern				Checked by:	El	Н				
•	1	2	3	4	5	6	7	8			

	1	2	3	4	5	6	7	8
BORING NO./SAMPLE NO.	B1-2R	B1-3R	B3-2R	B3-3R				
LABORATORY NO.	n/a	n/a	n/a	n/a				
DEPTH (ft.)	30	60	30	60				
FIELD CLASSIFICATION	n/a	n/a	n/a	n/a				
SAMPLE SIZE (in.)	2.375	2.375	2.375	2.375				
NO. OF RINGS SAMPLED		6	6	6				
NO. OF RINGS TESTED	4	5	4	4				
VOLUME OF SOIL TESTED (ft ³)	0.01025	0.01282	0.01025	0.01025				
TARE + WET SOIL (lbs.)	1.67	2.07	1.64	1.56				
TARE (lbs.)	0.60	0.75	0.60	0.60				
WET SOIL (lbs.)	1.07	1.32	1.04	0.96				
WEIGHT OF #4 ROCK (lbs.)	0.00	0.00	0.00	0.00				
WEIGHT OF 3/4 ROCK (lbs.)	0.00	0.00	0.00	0.00				
WET FINES	1.07	1.32	1.04	0.96				
WET WEIGHT (gms.)FOR MOIST. CONTENT	66.2	68.9	94.8	55.8				
DRY WEIGHT FOR MOISTURE CONTENT (GMS)	53.2	56.5	75.5	44.9				
MOISTURE CONTENT OF FINES (%)	24.4	21.9	25.6	24.3				
DRY FINES	0.86	1.08	0.83	0.78				
TOTAL DRY SOIL (lbs.)	0.86	1.08	0.83	0.78				
TOTAL WATER (lbs.)	0.21	0.24	0.21	0.19				
COMPOSITE MOISTURE (%)	24.4	21.9	25.6	24.3				
% OF #4 ROCK	0.0	0.0	0.0	0.0				
% OF 3/4 ROCK	0.0	0.0	0.0	0.0				
COMPOSITE DRY DENSITY (pcf)	83.5	84.2	80.5	75.6				

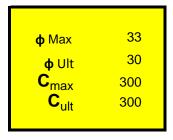
DEPARTMENT OF PUBLIC WORKS, LOS ANGELES GEOTECHNICAL & MATERIALS ENGINEERING

DIRECT SHEAR ASTM D3080

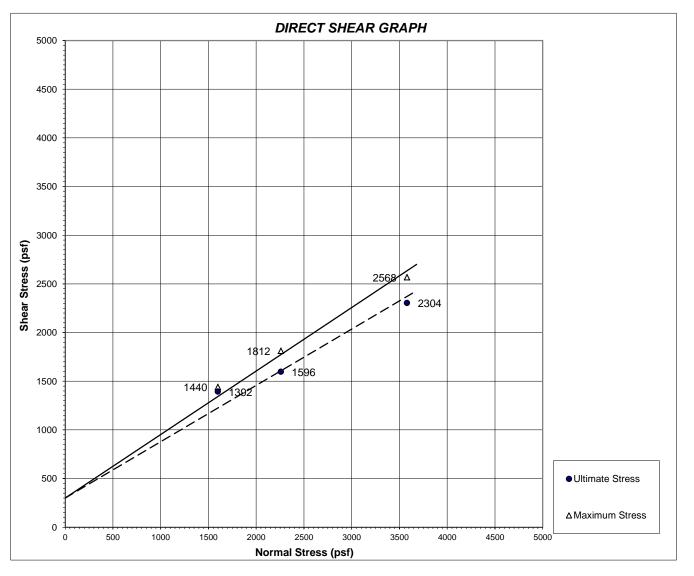
Notes: Dark Brown, Silt w/ trace of clay, plastic, moist.

Project: Gates Canyon Park

PCA: F21816i02 USC: n/a % (-200): n/a


 Boring/Sample:
 B1-2R
 LL:
 n/a
 PI:
 n/a

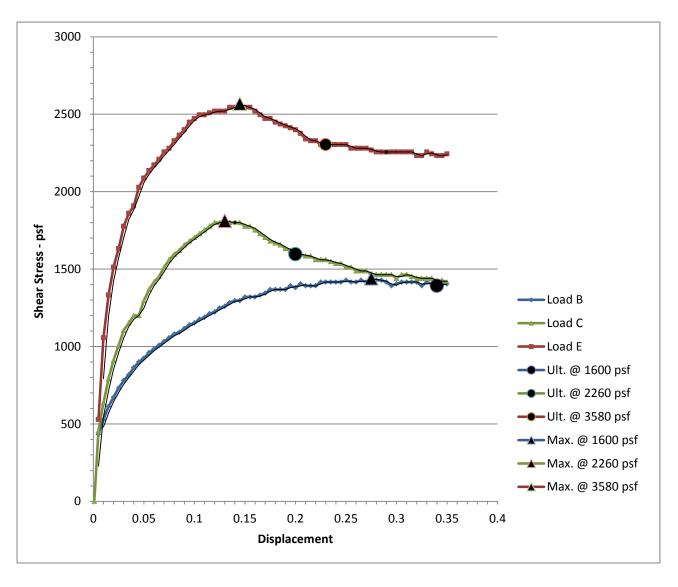
 Depth (ft):
 30
 % ret. 3/4":
 0.0
 % ret. #4:
 0.0


Sample Condition: soft Composite Dry Density (pcf): 83.5

Field Class.: n/a Composite Moisture (%): 24.4
Number of Rings: 6 Initial (Field) Void Ratio: 0.98
App. Soaking Time: 15 hrs. Initial (Field) Saturation (%): 66.1

Ring Dia.:	2.375		
Normal Stress	Ultimate Stress	Maximum Stress	RATE
(psf)	(psf)	(psf)	IN./MIN
1600	1392	1440	0.005
2260	1596	1812	5.500
3580	2304	2568	

Max (-tan) 0.6522 Ult (-tan) 0.5785



Multi Graph

Project Name: Gates Canyon Park

PCA: F21816i02 Boring/Sample: B1-2R

	Normal Stress	Ult. Stress	Dist.	Max. Stress	Dist.	Ring WGT + Wet Soil	Approx. Field Density
	psf	psf	inch	psf	inch	lb.	psf
Load B	1600	1392	0.34	1440	0.275	0.4111	81.8
Load C	2260	1596	0.2	1812	0.13	0.4201	84.7
Load E	3580	2304	0.23	2568	0.145	0.4295	87.6

DEPARTMENT OF PUBLIC WORKS, LOS ANGELES GEOTECHNICAL & MATERIALS ENGINEERING

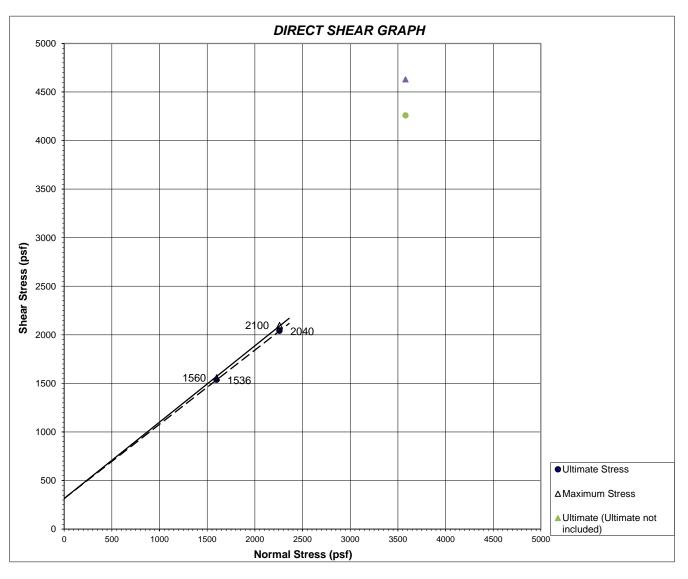
DIRECT SHEAR ASTM D3080

Project: Gates Canyon Park

USC: n/a PCA: F21816i02 % (-200): n/a

Boring/Sample: B1-3R LL: n/a PI: n/a Depth (ft): 60 % ret. 3/4": 0.0 % ret. #4: 0.0

Sample Condition: soft Composite Dry Density (pcf): 84.2

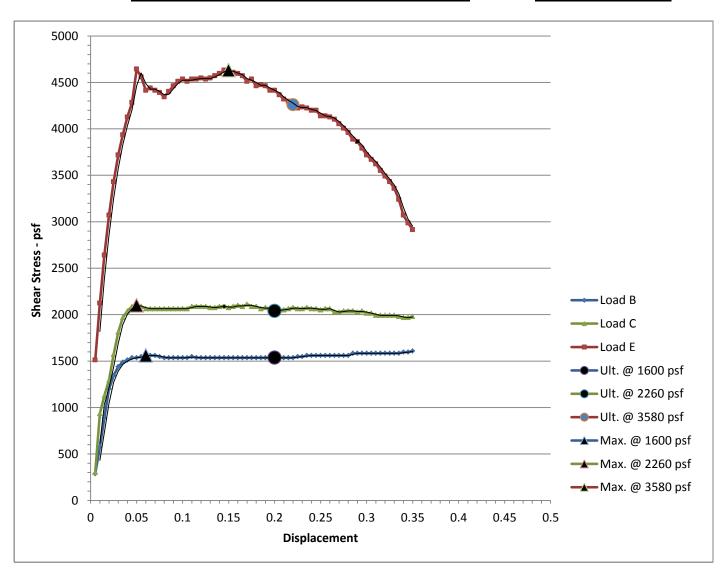

Field Class.: n/a Composite Moisture (%): 21.9 Number of Rings: 6 Initial (Field) Void Ratio: 0.96

App. Soaking Time: 24 hrs Initial (Field) Saturation (%): 60.3 Notes: Dense, Dark brown, silt with trace of clay, plastic, clay stones present from weak to moderate strength

Ring Dia.:	2.375		
Normal Stress	Ultimate Stress	Maximum Stress	RATE
(psf)	(psf)	(psf)	IN./MIN
1600	1536	1560	0.008
2260	2040	2100	0.000
3580	4259	4631	

ф Мах	38
φ Ult	37
C _{max}	314
C _{ult}	314

Max (-tan) 0.7863 Ult (-tan) 0.7636


Multi Graph

Project Name: Gates Canyon Park

PCA: F21816i02 Boring/Sample: B1-3R

	Normal Stress	Ult. Stress	Dist.	Max. Stress _{psf}	Dist.
Load B	1600	1536	0.2	1560	0.06
Load C	2260	2040	0.2	2100	0.05
Load E	3580	4259	0.22	4631	0.15

Ring WGT + Wet Soil	Approx. Field Density
lb.	psf
0.4090	82.8
0.4190	86.0
0.4290	89.2

DEPARTMENT OF PUBLIC WORKS, LOS ANGELES GEOTECHNICAL & MATERIALS ENGINEERING

DIRECT SHEAR ASTM D3080

sedimentation, pocket of

clay stone present.

Notes: Silt Stone, dry, brown,

Project: Gates Canyon Park

PCA: F21816i02 USC: n/a % (-200): n/a

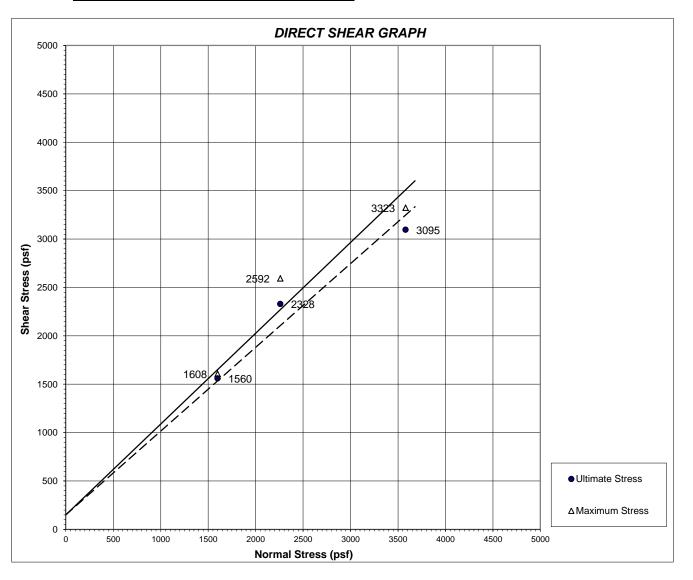
 Boring/Sample:
 B3-2R
 LL:
 n/a
 PI:
 n/a

 Depth (ft):
 30
 % ret.
 3/4":
 0.0
 % ret.
 #4:
 0.0

Sample Condition: soft Composite Dry Density (pcf): 80.5

Field Class.: n/a Composite Moisture (%): 25.6

Number of Rings: 6 Initial (Field) Void Ratio: 1.05

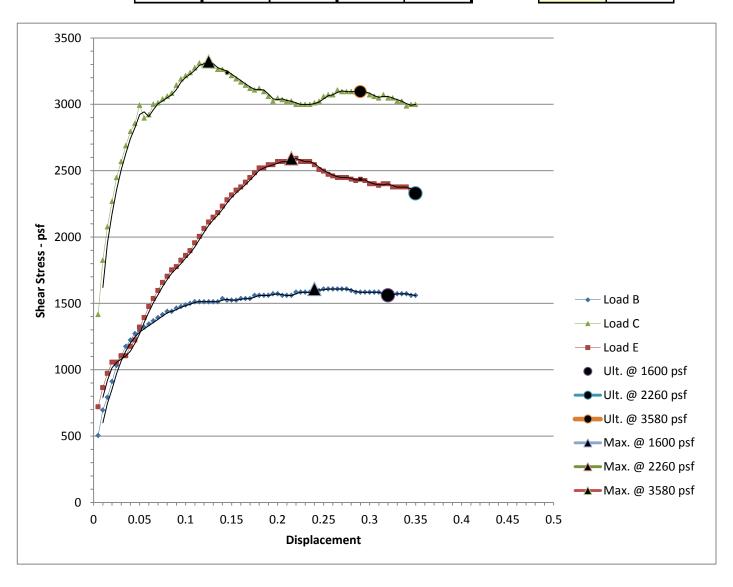

App. Soaking Time: 24 hrs Initial (Field) Saturation (%): 64.3

Ring Dia.:	2.375			
Normal Stress	Ultimate Stress	Maximum Stress	RATE	
(psf)	(psf)	(psf)	IN./MIN	
1600	1560	1608	0.015	
2260	2328	2592	0.010	
3580	3095	3323		

φ Max 43
φ Ult 41
C_{max} 150
C_{ult} 150

Max (-tan) 0.9379

Ult (-tan) 0.8651


Multi Graph

Project Name: Gates Canyon Park

PCA: F21816i02 Boring/Sample: B3-2R

	Normal Stress	Ult. Stress	Dist.	Max. Stress	Dist.
ſ					
Load B	1600	1560	0.32	1608	0.24
Load C	2260	2328	0.35	2592	0.215
Load E	3580	3095	0.29	3323	0.125

Ring WGT + Wet Soil	Approx. Field Density
lb.	psf
0.3985	77.2
0.4014	78.1
0.4151	82.4

B2-3R Load E, Claystone pocket

DEPARTMENT OF PUBLIC WORKS, LOS ANGELES GEOTECHNICAL & MATERIALS ENGINEERING

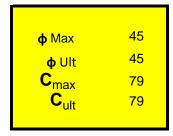
DIRECT SHEAR ASTM D3080 / D2488

Project: Gates Canyon Park

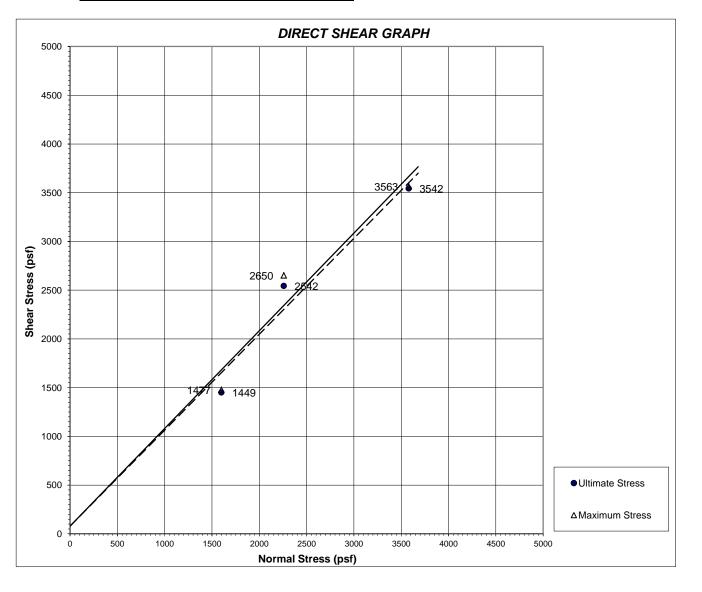
PCA: F21816i02 USC: n/a % (-200): n/a

Boring/Sample: B3-3R LL: n/a PI: n/a Notes: Silt stone, light brown

Depth (ft): 60 % ret. 3/4": 0.0 % ret. #4: 0.0


Sample Condition: soft Composite Dry Density (pcf): 75.6

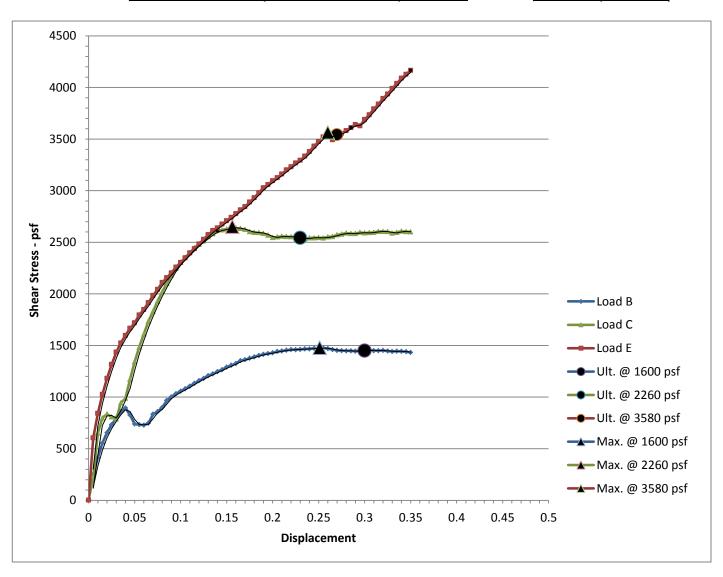
Field Class.: n/a Composite Moisture (%): 24.3


Number of Rings: 6 Initial (Field) Void Ratio: 1.19

App. Soaking Time: 24 hrs Initial (Field) Saturation (%): 54.2

Ring Dia.:	2.375			
Normal Stress	Ultimate Stress	Maximum Stress	RATE	
(psf)	(psf)	(psf)	IN./MIN	
1600	1449	1477	0.015	
2260	2542	2650	3.3.0	
3580	3542	3563		

Max (-tan) 1.0018 Ult (-tan) 0.9841


Multi Graph

Project Name: Gates Canyon Park

PCA: F21816i02 Boring/Sample: B3-3R

	Normal Stress	Ult. Stress	Dist.	Max. Stress _{psf}	Dist.
Load B	1600	1449	0.3	1477	0.2512
Load C	2260	2542	0.23	2650	0.1562
Load E	3580	3542	0.27	3563	0.26

Ring WGT + Wet Soil	Approx. Field Density
lb.	psf
0.3845	73.6
0.3939	76.6
0.4100	81.6

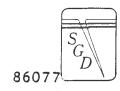
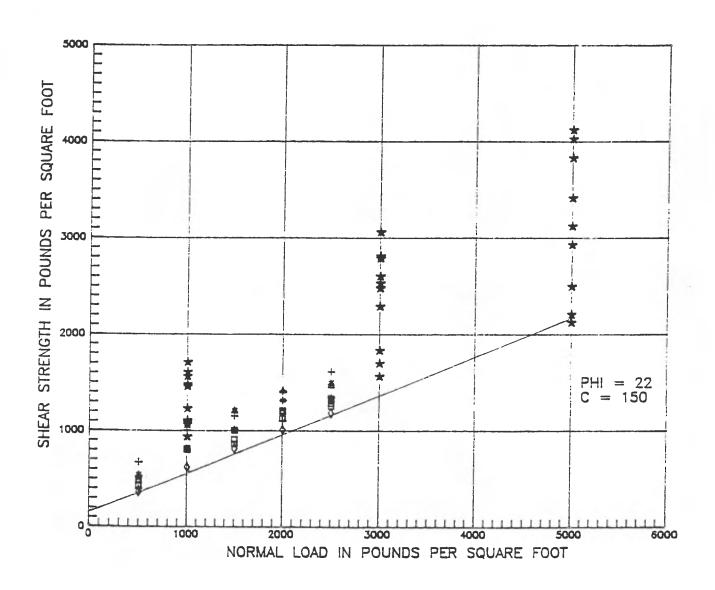
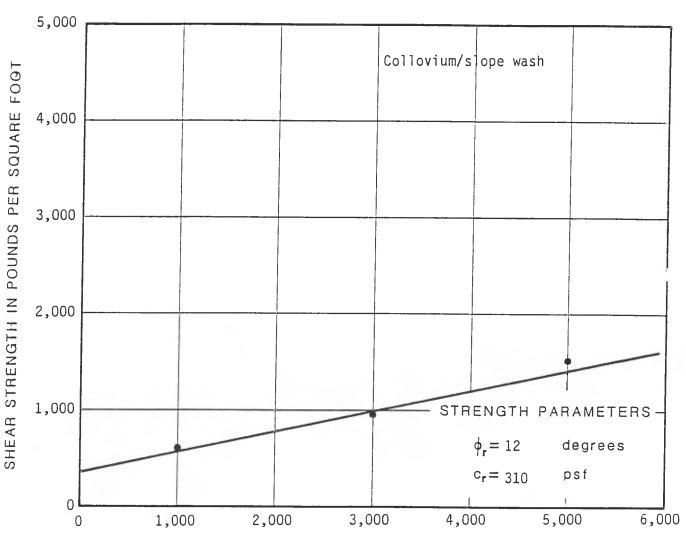



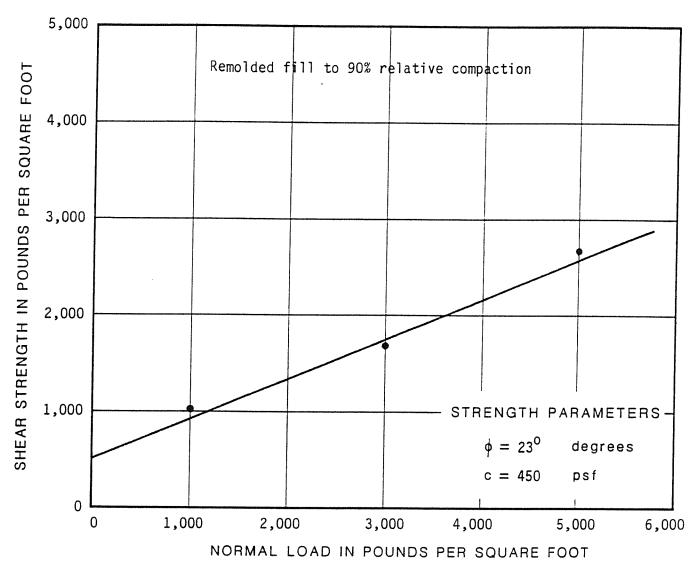
FIGURE 3


SHEAR STRENGTH ALONG BEDDING
Modelo Mudstone, Claystone and Siltstone

Note: The * indicates tests performed for this investigation while the other symbols indicate tests performed by Foundation Engineers, Inc. (1980)

DIRECT SHEAR TEST DATA

NORMAL LOAD IN POUNDS PER SQUARE FOOT

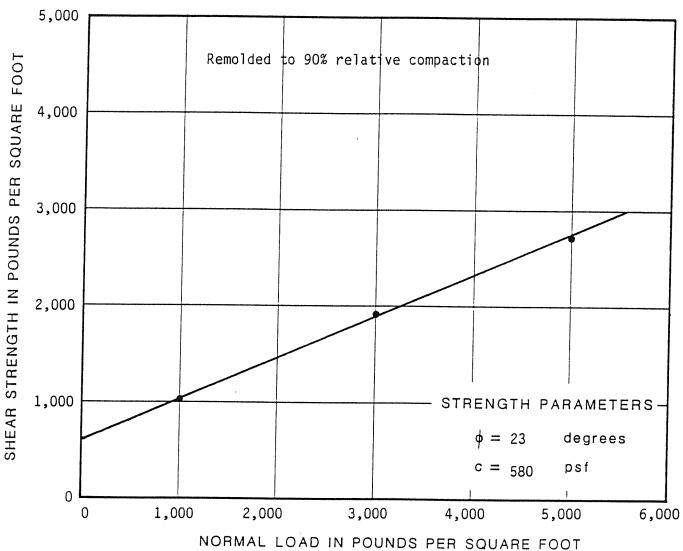

	SAMPLE 1	SAMPLE 2	SAMPLE 3
Location	Surface Grab.(a)		
Depth (ft.)	0		
Normal Load (psf)	1000	3000	5000
Dry Density (pcf)	89		
Moisture Content (%)	28		

Sample Type: Test performed on pre-cut shear plane.

Description: Firm, dark grey fat CLAY (CH)

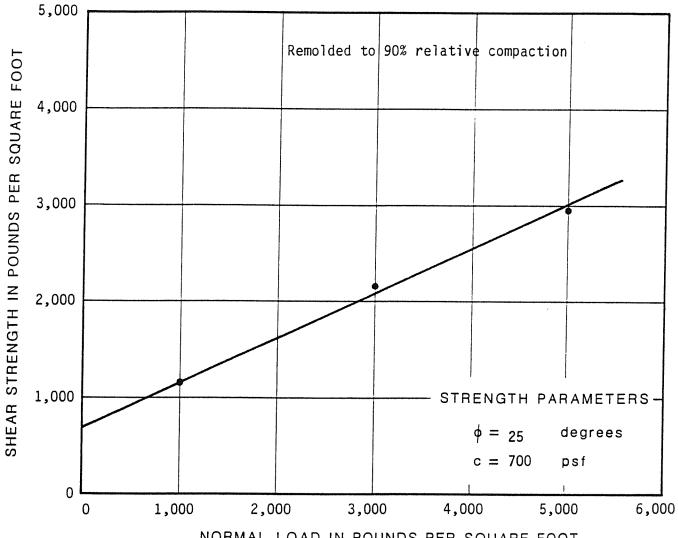
Grab Sample (a) from middle sandstone member of the Modelo Formation (Tmmss), Lot 34 of revised grading plan dated PLATE B-3.15 December 17, 1986

DIRECT SHEAR TEST DATA


SAMPLE 1 SAMPLE 2 SAMPLE 3

Location	9		
Depth (ft.)	28		
Normal Load (psf)	1000	3000	5000
Dry Density (pcf)	55	55	56
Moisture Content (%)	55	55	55

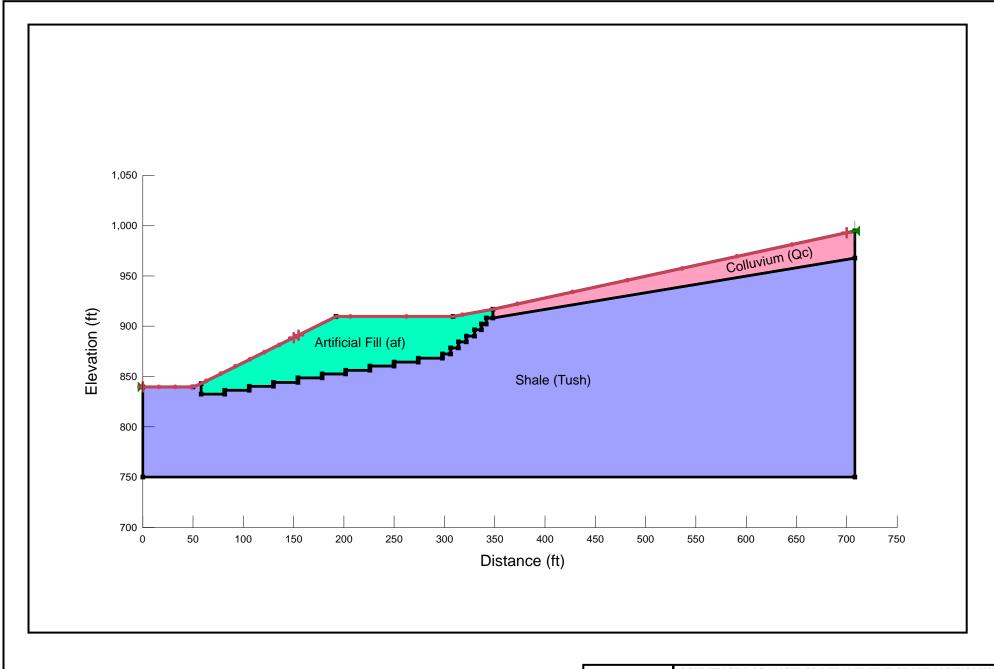
Sample Type:	Remolded to 90% R.C.
Description:	

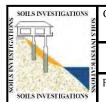

DIRECT SHEAR TEST DATA

	SAMPLE 1	SAMPLE 2	SAMPLE 3
Location	DH - 10		
Depth (ft.)	7		
Normal Load (psf)	1000	3000	5000
Dry Density (pcf)	71	71	71
Moisture Content (%)	38	38	38

Sample	Type:	Remolded to 90% R.C.
Descrip	tion:	

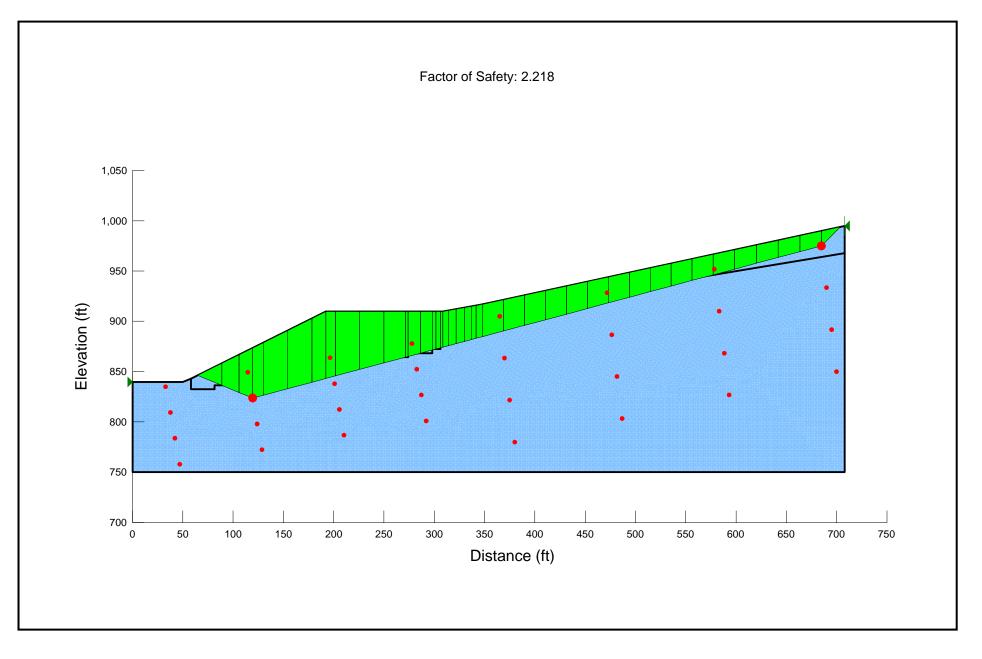
DIRECT SHEAR TEST DATA

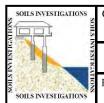

NORMAL LOAD IN POUNDS PER SQUARE FOOT


	SAMPLE 1	SAMPLE 2	SAMPLE 3
Location	DH - 12		
Depth (ft.)	3		
Normal Load (psf)	1000	3000	5000
Dry Density (pcf)	84	84	84
Moisture Content (%)	23	23	23

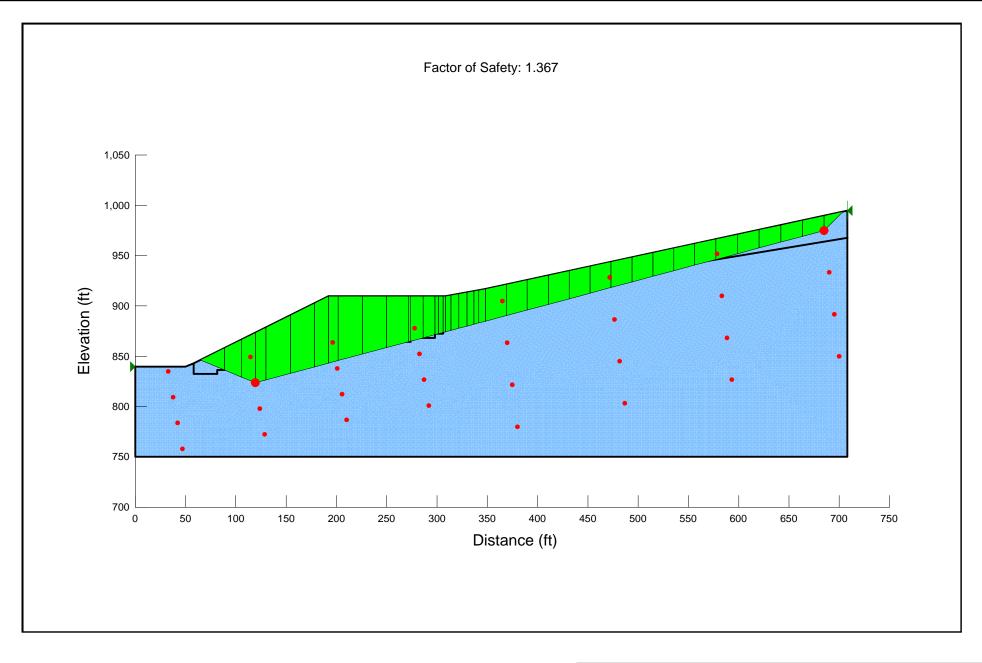
Sample Typ	e: <u>Remolded</u>	to 90% R.C.	
Description	•		

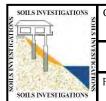
Appendix D


Slope Stability Analyses

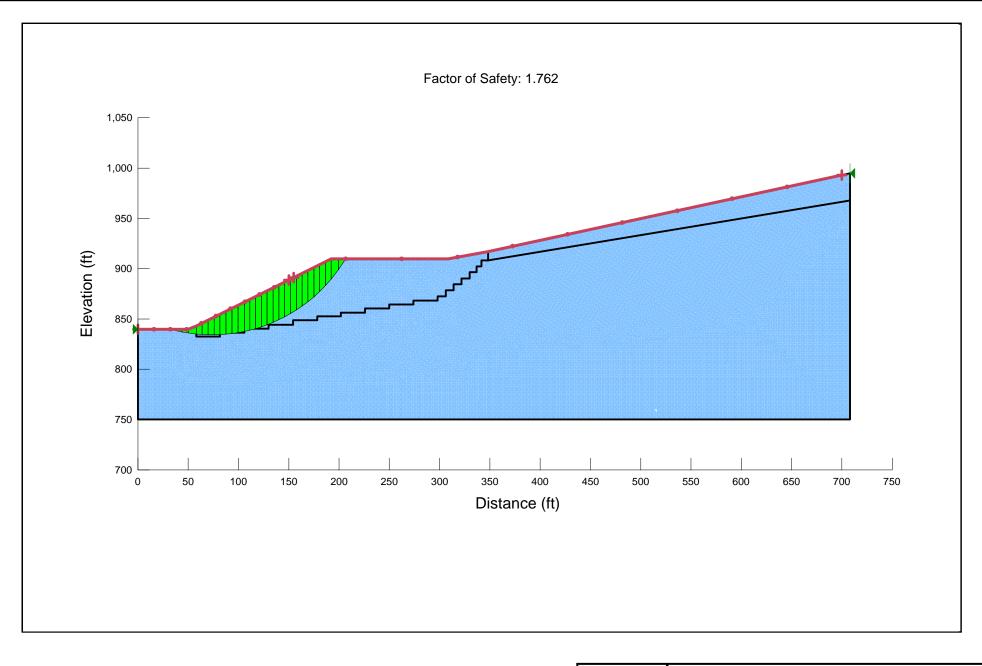


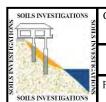
Materials Cross-Section


PREPARED BY: AKK & CMS DATE: 8/9/17

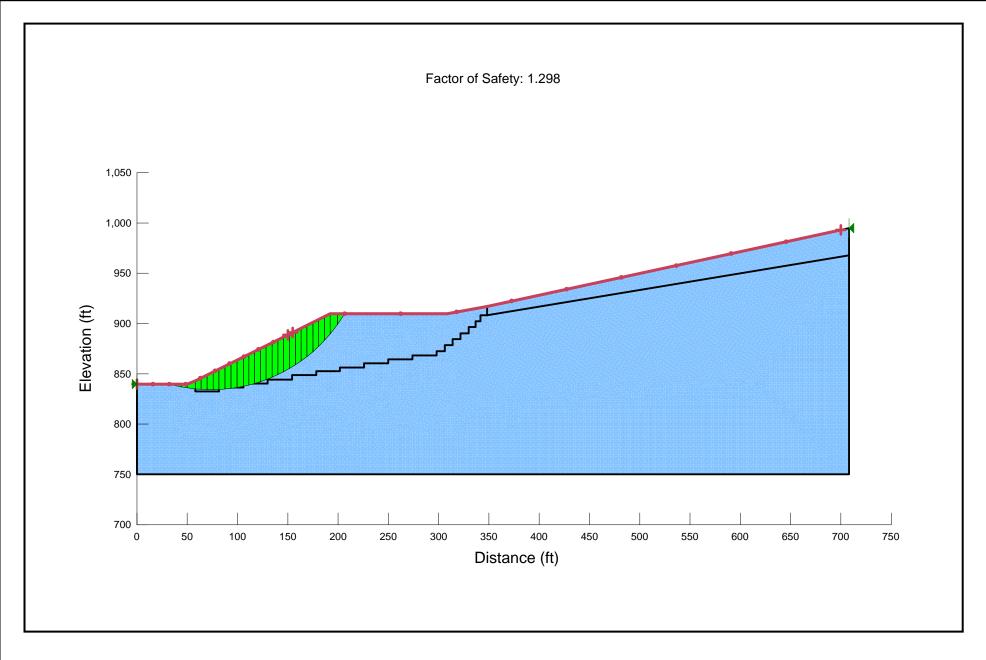


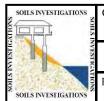
Existing Translational Static


PREPARED BY: AKK & CMS DATE: 8/9/17

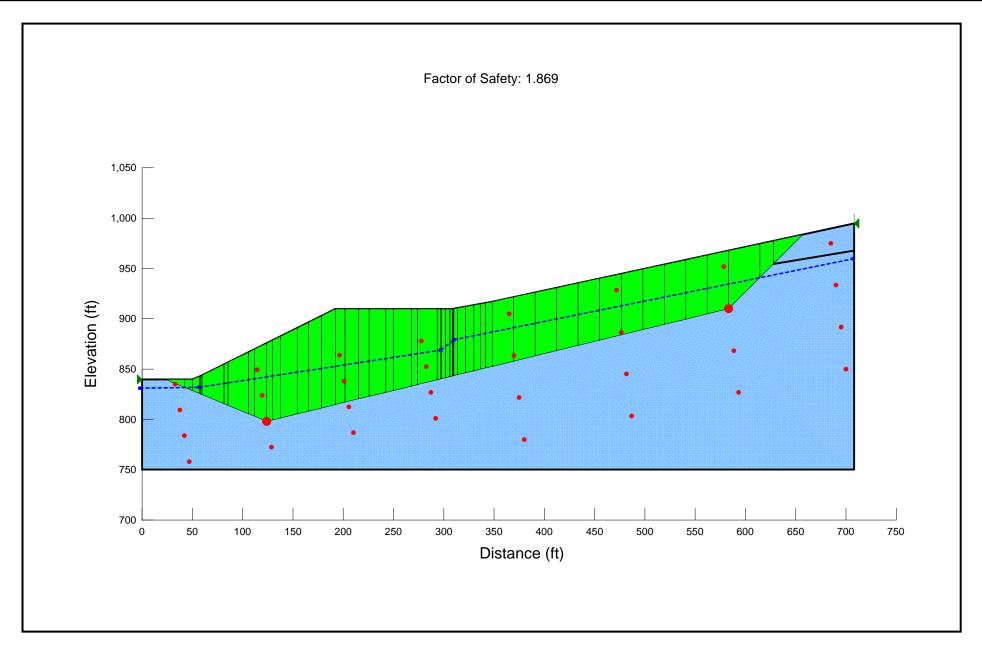


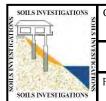
Existing Translational Seismic


PREPARED BY: AKK & CMS DATE: 8/9/17

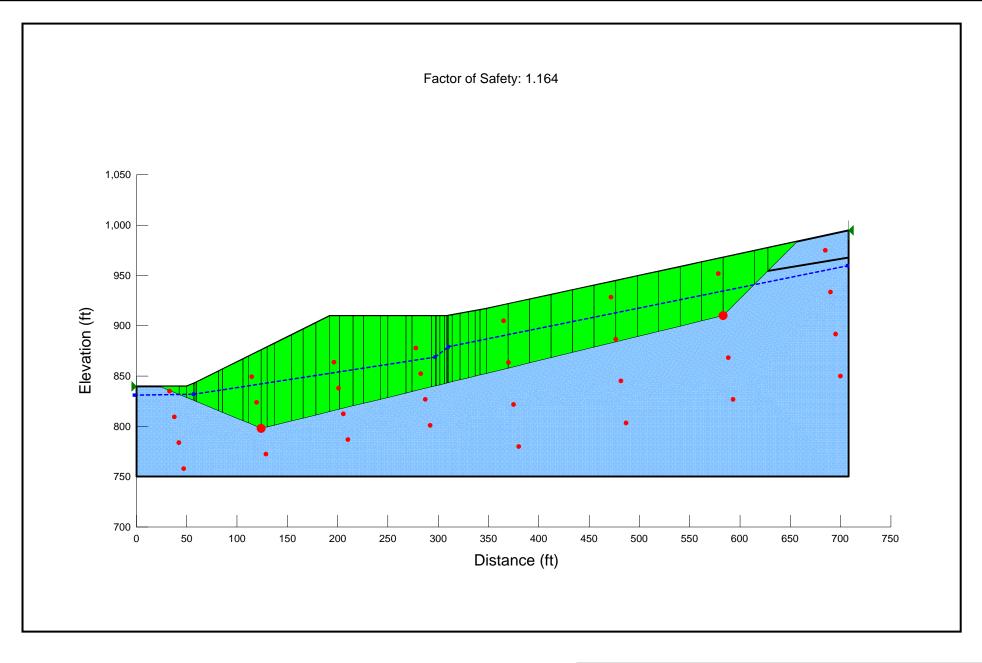


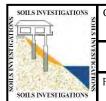
Existing Circular Static


PREPARED BY: AKK & CMS DATE: 8/9/17

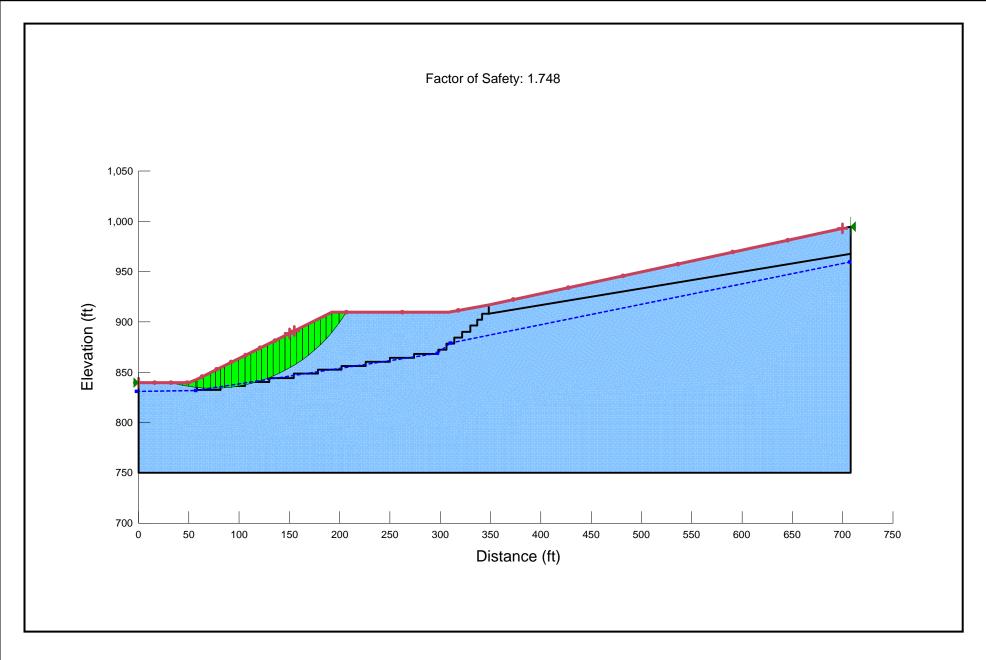


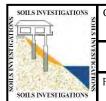
Existing Circular Seismic


PREPARED BY: AKK & CMS DATE: 8/9/17

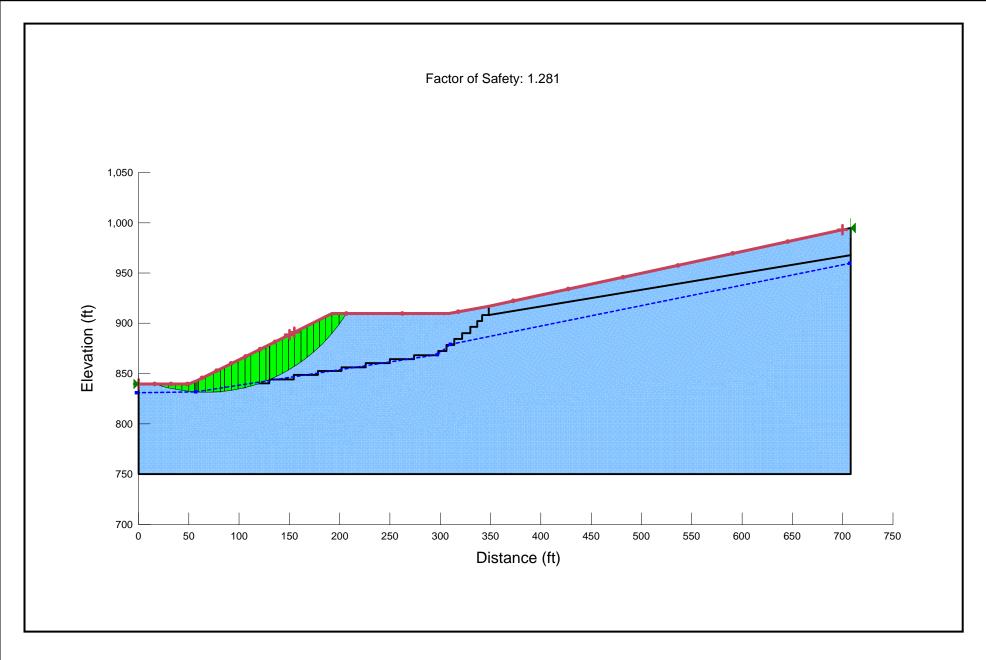


Proposed Translational Static


PREPARED BY: AKK & CMS DATE: 8/9/17



Proposed Translational Seismic


PREPARED BY: AKK & CMS DATE: 8/9/17

Proposed Circular Static

PREPARED BY: AKK & CMS DATE: 8/9/17

Proposed Circular Seismic

PREPARED BY: AKK & CMS DATE: 8/9/17

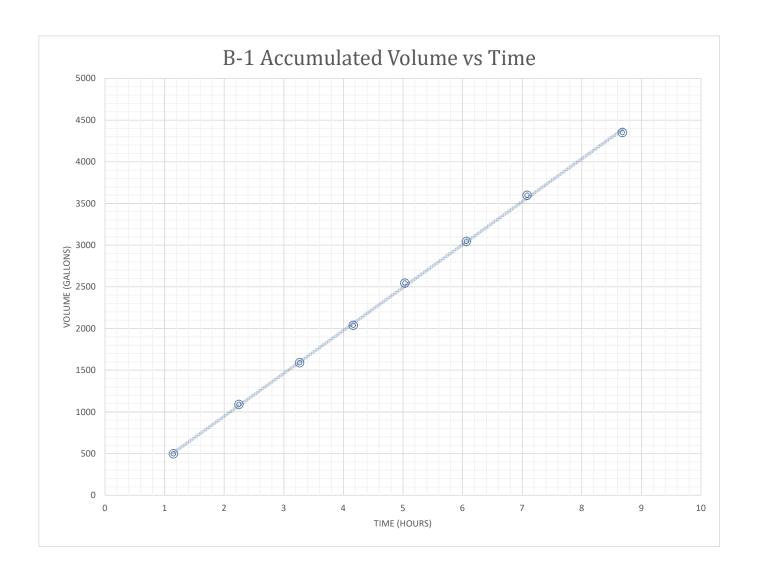
Appendix E

Percolation Test Calculation Sheets

PERCOLATION TEST DATA B-1

Project	Gates Cyn Park	Job. No	F21816i02
Staff	Kevin Phan	Date	5/25/2016

Test Hole	B-1	Depth after Pre-Saturation	36.8 ft
Boring Diameter	2 ft	Effective Height	21.3 ft
Total Depth	80 ft	Effective Area	137.0 ft ²
Capping Depth	15 ft	Total Time	0.4 days


Time (min)	Acc.Time (min)	Acc. Time (Hr)	Volume (Gallons)	Acc. Volume (Gallons)	Percolation Rate (in/hr)
69	69	1.15	495	495	5.04
66	135	2.25	594	1089	6.32
61	196	3.27	500	1589	5.76
54	250	4.17	448	2037	5.83
52	302	5.03	507	2544	6.85
62	364	6.07	500	3044	5.67
61	425	7.08	554	3598	6.38
96	521	8.68	752	4350	5.50
Total		8.68	4350		

Acc. Perc Rate	5.87	in/hr
(from Totals)	87.78	gal/ft²/day

$$Percolation \ Rate(^{in}/_{hr}) = Total \ Volume \ (Gallons) \times \frac{1 \ (ft^3)}{7.48052 \ (Gallons)} \times \frac{1}{Effective \ Area \ (ft^2)} \times \frac{12 \ (in)}{1 \ (ft)} \times \frac{1}{Total \ Time \ (hrs)}$$

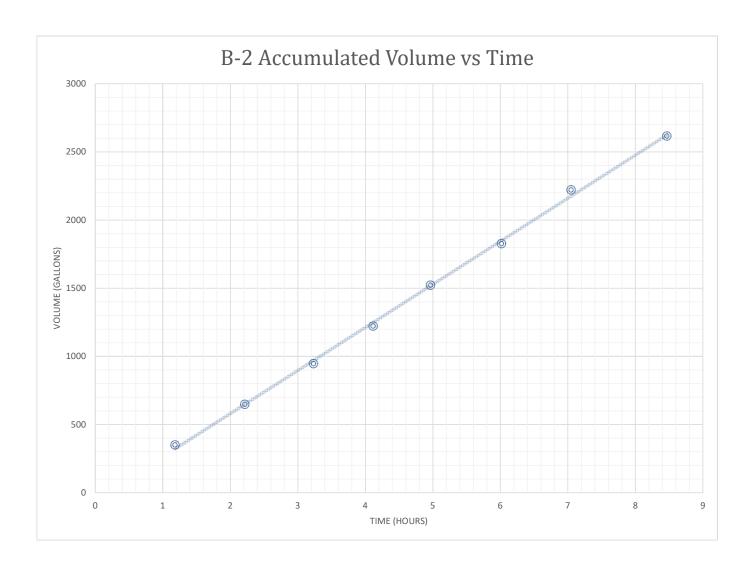
$$\textit{Effective Area} \ (ft^2) = 2\pi rh + \pi r^2 \ ; \\ \textit{Where} \ r = \textit{boring radius} = \frac{\textit{Boring Diameter}}{2} \ , \\ \textit{and} \ h = \textit{Effective Height} \ . \\ \textit{The proposed of the proposed of t$$

$$Percolation \ Rate \left(\frac{\underline{Gallons}}{\underline{ft^2}} \right) = \frac{\underline{Total\ Volume\ (Gallons)}}{\underline{Effective\ Area\ (ft^2)}}$$

PERCOLATION TEST DATA B-2

Project	Gates Cyn Park	Job. No	F21816i02
Staff	Kevin Phan	Date	5/25/2016

Test Hole	B-2	Depth after Pre-Saturation	42.2 ft
Boring Diameter	2 ft	Effective Height	32.2 ft
Total Depth	60 ft	Effective Area	205.5 ft ²
Capping Depth	10 ft	Total Time	0.4 days


Time (min)	Acc.Time (min)	Acc. Time (Hr)	Volume (Gallons)	Acc. Volume (Gallons)	Percolation Rate (in/hr)
71	71	1.18	351	351	2.32
62	133	2.22	298	649	2.25
61	194	3.23	298	947	2.29
53	247	4.12	275	1222	2.43
51	298	4.97	300	1522	2.76
63	361	6.02	305	1827	2.27
62	423	7.05	394	2221	2.98
85	508	8.47	396	2617	2.18
Total:		8.47	2617		

Acc. Perc Rate	2.41	in/hr
(from Totals)	36.11	gal/ft²/day

$$Percolation \ Rate(^{in}/_{hr}) = Total \ Volume \ (Gallons) \times \frac{1 \ (ft^3)}{7.48052 \ (Gallons)} \times \frac{1}{Effective \ Area \ (ft^2)} \times \frac{12 \ (in)}{1 \ (ft)} \times \frac{1}{Total \ Time \ (hrs)}$$

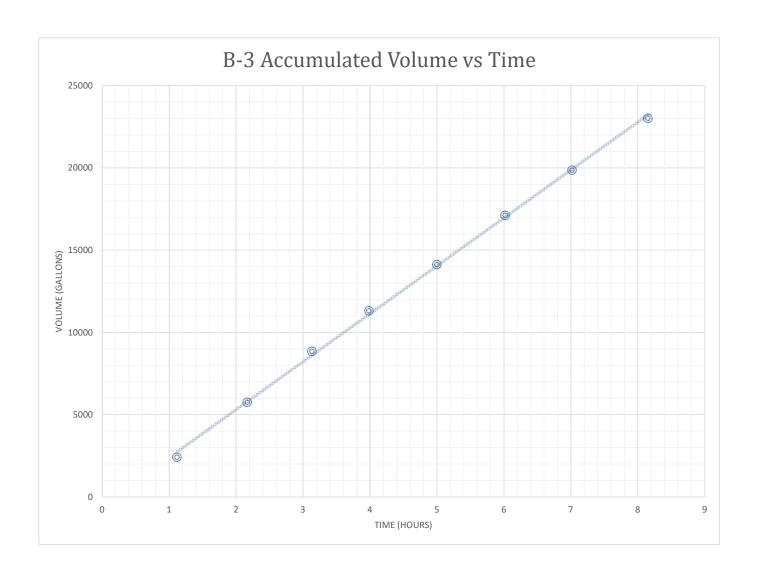
$$\textit{Effective Area} \ (ft^2) = 2\pi rh + \pi r^2 \ ; \\ \textit{Where} \ r = \textit{boring radius} = \frac{\textit{Boring Diameter}}{2} \ , \\ \textit{and} \ h = \textit{Effective Height} \ . \\ \textit{The proposed of the proposed of t$$

$$Percolation \ Rate \left(\frac{\underline{Gallons}}{\underline{ft^2}} \right) = \frac{\underline{Total\ Volume\ (Gallons)}}{\underline{Effective\ Area\ (ft^2)}}$$

PERCOLATION TEST DATA B-3

Project	Gates Cyn Park	Job. No	F21816i02
Staff	Kevin Phan	Date	5/25/2016

Test Hole	B-3	Depth after Pre-Saturation	36.8 ft
Boring Diameter	2 ft	Effective Height	28 ft
Total Depth	40 ft	Effective Area	179.1 ft ²
Capping Depth	12 ft	Total Time	0.3 days


Time (min)	Acc.Time (min)	Acc. Time (Hr)	Volume (Gallons)	Acc. Volume (Gallons)	Percolation Rate (in/hr)
67	67	1.12	2406	2406	19.30
63	130	2.17	3348	5754	28.57
58	188	3.13	3099	8853	28.72
51	239	3.98	2462	11315	25.95
61	300	5.00	2800	14115	24.67
61	361	6.02	2995	17110	26.39
60	421	7.02	2749	19859	24.63
68	489	8.15	3152	23011	24.92
Total:		8.15	23011		

Acc. Perc Rate	25.29	in/hr
(from Totals)	378.41	gal/ft²/day

$$Percolation \ Rate(^{in}/_{hr}) = Total \ Volume \ (Gallons) \times \frac{1 \ (ft^3)}{7.48052 \ (Gallons)} \times \frac{1}{Effective \ Area \ (ft^2)} \times \frac{12 \ (in)}{1 \ (ft)} \times \frac{1}{Total \ Time \ (hrs)}$$

$$\textit{Effective Area} \ (ft^2) = 2\pi rh + \pi r^2 \ ; \\ \textit{Where} \ r = \textit{boring radius} = \frac{\textit{Boring Diameter}}{2} \ , \\ \textit{and} \ h = \textit{Effective Height} \ . \\ \textit{The proposed of the proposed of t$$

$$Percolation \ Rate \left(\frac{\underline{Gallons}}{ft^2} \right) = \frac{\underline{Total \ Volume \ (Gallons)}}{\underline{Total \ Time \ (Days)}}$$

